703 research outputs found
Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii
Background
Toxoplasma gondii is an opportunistic pathogenic protozoan parasite, which infects approximately one third of the human population worldwide, causing opportunistic zoonotic toxoplasmosis. The predilection of T. gondii for the central nervous system (CNS) causes behavioral disorders and fatal necrotizing encephalitis and thus constitutes a major threat especially to AIDS patients. Methods
In the present study, we explored the proteomic profiles of brain tissues of the specific pathogen-free (SPF) Kunming mice at 7 d, 14 d and 21 d after infection with cysts of the Toxoplasma gondii Prugniaud (PRU) strain (Genotype II), by two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem mass spectrometry (MS/MS). Results
A total of 60 differentially expressed protein spots were selected. Fifty-six spots were successfully identified, which corresponded to 45 proteins of the mouse. Functional analysis using a Gene Ontology database showed that these proteins were mainly involved in metabolism, cell structure, signal transduction and immune responses, and will be beneficial for the understanding of molecular mechanisms of T. gondii pathogenesis. Conclusions
This study identified some mouse brain proteins involved in the response with cyst-forming T. gondii PRU strain. These results provided an insight into the responsive relationship between T. gondii and the host brain tissues, which will shed light on our understanding of the mechanisms of pathogenesis in toxoplasmic encephalitis, and facilitate the discovery of new methods of diagnosis, prevention, control and treatment of toxoplasmic encephalopathy
Anti-HCV reactive volunteer blood donors distribution character and genotypes switch in Xi'an, China
HCV is prevailed in the world as well as in China. Blood transfusion is one of the most common transmission pathways of this pathogen. Although data of HCV infection character were reported during the past years, anti-HCV reactive profile of China donors was not fully clear yet. Furthermore, infection progress was found related to the HCV genotype. Different genotype led to different efficacy when interferon was introduced into HCV therapy. Here we provided character data of HCV infection in China blood donors from the year of 2000 to 2009. The infection rate in local donors was lower than general population and descended from 0.80% to 0.40% or so in recent years. About 83% HCV strains were categorized into genotypes 1b and 2a. But 1b subtype cases climbed and 2a subtype cases decreased. The current study threw more light on HCV infection of blood donors in China, at least in the Northern region
Effectiveness of the Hugging Balloon Technique in Coronary Angioplasty for a Heavy, Encircling, Calcified Coronary Lesion
We report our experience in coronary angioplasty and intravascular ultrasonography (IVUS) on a heavy, encircling, calcified lesion that was not dilated with the use of a cutting balloon and a non-compliant balloon. The angioplasty was successfully performed with a simple and inexpensive hugging balloon technique
A longitudinal resource for population neuroscience of school-age children and adolescents in China
During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013β2022), the first ten-year stage of the lifespan CCNP (2013β2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0β17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the βChinese Data-sharing Warehouse for In-vivo Imaging Brainβ in the Chinese Color Nest Project (CCNP) β Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank
Genomewide association study of leprosy.
BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
Psoriasis Regression Analysis of MHC Loci Identifies Shared Genetic Variants with Vitiligo
Psoriasis is a common inflammatory skin disease with genetic components of both immune system and the epidermis. PSOR1 locus (6q21) has been strongly associated with psoriasis; however, it is difficult to identify additional independent association due to strong linkage disequilibrium in the MHC region. We performed stepwise regression analyses of more than 3,000 SNPs in the MHC region genotyped using Human 610-Quad (Illumina) in 1,139 cases with psoriasis and 1,132 controls of Han Chinese population to search for additional independent association. With four regression models obtained, two SNPs rs9468925 in HLA-C/HLA-B and rs2858881 in HLA-DQA2 were repeatedly selected in all models, suggesting that multiple loci outside PSOR1 locus were associated with psoriasis. More importantly we find that rs9468925 in HLA-C/HLA-B is associated with both psoriasis and vitiligo, providing first important evidence that two major skin diseases share a common genetic locus in the MHC, and a basis for elucidating the molecular mechanism of skin disorders
Suppression of Allograft Rejection by Tim-1-Fc through Cross-Linking with a Novel Tim-1 Binding Partner on T Cells
Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4+ effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4+ T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4+ T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3+ cells in splenic CD4+ T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4+CD25β T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection
Clear Genetic Distinctiveness between Human- and Pig-Derived Trichuris Based on Analyses of Mitochondrial Datasets
The whipworm, Trichuris trichiura, causes trichuriasis in βΌ600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions
- β¦