901 research outputs found

    Electrophysiological Measurements of Compound Action Potential Responses from the Antennal Nerve in Response to Stimulation

    Get PDF
    Electrophysiological recordings taken from the antennal nerve can provide essential information on the general auditory condition of the mosquito tested. Furthermore, electrophysiological recordings provide detailed information on what types of stimulation induce the largest nerve responses. When these are used in conjunction with a vibrometer to measure the corresponding movement of the antennal ear during stimulation, a comprehensive overview of hearing function can be obtained. This protocol can be applied to male and female adults from any mosquito strain and can be scaled relative to available resources

    Stabilisation of the high energy orbit for a nonlinear energy harvester with variable damping

    Get PDF
    The non-linearity of a hardening-type oscillator provides a wider bandwidth and a higher energy harvesting capability under harmonic excitations. Also, both low- and high-energy responses can coexist for the same parameter combinations at relatively high excitation levels. However, if the oscillator’s response happens to coincide with the low-energy orbit then the improved performance achieved by the non-linear oscillator over that of its linear counterpart, could be impaired. This is therefore the main motivation for stabilisation of the high-energy orbit. In the present work, a schematic harvester design is considered consisting of a mass supported by two linear springs connected in series, each with a parallel damper, and a third-order non-linear spring. The equivalent linear stiffness and damping coefficients of the oscillator are derived through variation of the damper element. From this adjustment the variation of the equivalent stiffness generates a corresponding shift in the frequency–amplitude response curve, and this triggers a jump from the low-energy orbit to stabilise the high-energy orbit. This approach has been seen to require little additional energy supply for the adjustment and stabilisation, compared with that needed for direct stiffness tuning by mechanical means. Overall energy saving is of particular importance for energy harvesting applications. Subsequent results from simulation and experimentation confirm that the proposed method can be used to trigger a jump to the desirable state, thereby introducing a beneficial addition to the performance of the non-linear hardening-type energy harvester that improves overall efficiency and broadens the bandwidth

    The auditory efferent system in mosquitoes

    Get PDF
    Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception

    Acoustic Physiology in Mosquitoes

    Get PDF
    The acoustic physiology of mosquitoes is perhaps the most complex within the entire insect class. Past research has uncovered several of its-sometimes stunningly unconventional-principles, but many mysteries remain. Their solution necessitates a concerted transdisciplinary effort to successfully link the neuroanatomical and biophysical properties of mosquito flagellar ears to the behavioral ecology of entire mosquito populations. Neuroanatomically, mosquito ears can rival those of humans in both complexity and sheer size. The approximately 16,000 auditory hair cells within the human organ of Corti, for example, are matched by the approximately 16,000 auditory neurons in the Johnston's organ of a male Anopheles mosquito. Both human and mosquito ears receive very extensive efferent innervation, which modulates their function in ways that are as yet poorly understood. Different populations of neuronal and nonneuronal cell types divide the labor of the mosquito ear amongst themselves. Yet, what exactly this labor is, and how it is achieved, is at best vaguely known. For the majority of mosquitoes, biologically relevant sounds are inextricably linked to their flight tones. Either these flight tones are (directly) the sounds of interest or they contribute (indirectly) to the production of audible sound through a process called nonlinear distortion. Finally, male ears can generate tones themselves: The generation of an internal "phantom copy" of a female flight tone (or self-sustained oscillation) is believed to aid the male hearing process. Here, we introduce protocols that target the mosquitoes' auditory neuroanatomy, electrophysiology, and behavior to help shed light on some of these issues

    The auditory efferent system in mosquitoes

    Get PDF
    Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception

    Searching for signatures of sexually antagonistic selection on stickleback sex chromosomes.

    Get PDF
    Intralocus sexually antagonistic selection occurs when an allele is beneficial to one sex but detrimental to the other. This form of selection is thought to be key to the evolution of sex chromosomes but is hard to detect. Here we perform an analysis of phased young sex chromosomes to look for signals of sexually antagonistic selection in the Japan Sea stickleback (Gasterosteus nipponicus). Phasing allows us to date the suppression of recombination on the sex chromosome and provides unprecedented resolution to identify sexually antagonistic selection in the recombining region of the chromosome. We identify four windows with elevated divergence between the X and Y in the recombining region, all in or very near genes associated with phenotypes potentially under sexually antagonistic selection in humans. We are unable, however, to rule out the alternative hypothesis that the peaks of divergence result from demographic effects. Thus, although sexually antagonistic selection is a key hypothesis for the formation of supergenes on sex chromosomes, it remains challenging to detect. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'

    Local Periodicity-Based Beat Tracking for Expressive Classical Piano Music

    Full text link
    To model the periodicity of beats, state-of-the-art beat tracking systems use "post-processing trackers" (PPTs) that rely on several empirically determined global assumptions for tempo transition, which work well for music with a steady tempo. For expressive classical music, however, these assumptions can be too rigid. With two large datasets of Western classical piano music, namely the Aligned Scores and Performances (ASAP) dataset and a dataset of Chopin's Mazurkas (Maz-5), we report on experiments showing the failure of existing PPTs to cope with local tempo changes, thus calling for new methods. In this paper, we propose a new local periodicity-based PPT, called predominant local pulse-based dynamic programming (PLPDP) tracking, that allows for more flexible tempo transitions. Specifically, the new PPT incorporates a method called "predominant local pulses" (PLP) in combination with a dynamic programming (DP) component to jointly consider the locally detected periodicity and beat activation strength at each time instant. Accordingly, PLPDP accounts for the local periodicity, rather than relying on a global tempo assumption. Compared to existing PPTs, PLPDP particularly enhances the recall values at the cost of a lower precision, resulting in an overall improvement of F1-score for beat tracking in ASAP (from 0.473 to 0.493) and Maz-5 (from 0.595 to 0.838).Comment: Accepted to IEEE/ACM Transactions on Audio, Speech, and Language Processing (July 2023

    Precision Sensorimotor Control in Aging FMR1 Gene Premutation Carriers.

    Get PDF
    Background: Individuals with premutation alleles of the Materials and Methods: 26 Results: Relative to controls, premutation carriers showed reduced rates of initial force generation during rapid motor actions and longer durations of their initial pressing with their dominant hand. During sustained force, premutation carriers demonstrated reduced force complexity, though this effect was specific to younger premutation carries during dominant hand pressing and was more severe for younger relative to older premutation carriers at low and medium force levels. Increased reaction time and lower sustained force complexity each were associated with greater CGG repeat length for premutation carriers. Increased reaction time and increased sustained force variability were associated with more severe clinically rated FXTAS symptoms. Conclusion: Overall our findings suggest multiple sensorimotor processes are disrupted in aging premutation carriers, including initial force control guided by feedforward mechanisms and sustained sensorimotor behaviors guided by sensory feedback control processes. Results indicating that sensorimotor issues in aging premutation carriers relate to both greater CGG repeat length and clinically rated FXTAS symptoms suggest that quantitative tests of precision sensorimotor ability may serve as key targets for monitoring FXTAS risk and progression

    Early Health Economic Modeling of Novel Therapeutics in Age-Related Hearing Loss

    Get PDF
    Background: Health systems face challenges to accelerate access to innovations that add value and avoid those unlikely to do so. This is very timely to the field of age-related sensorineural hearing loss (ARHL), where a significant unmet market need has been identified and sizeable investments made to promote the development of novel hearing therapeutics (NT). This study aims to apply health economic modeling to inform the development of cost-effective NT. Methods: We developed a decision-analytic model to assess the potential costs and effects of using regenerative NT in patients ≥50 with ARHL. This was compared to the current standard of care including hearing aids and cochlear implants. Input data was collected from systematic literature searches and expert opinion. A UK NHS healthcare perspective was adopted. Three different but related analyses were performed using probabilistic modeling: (1) headroom analysis, (2) scenario analyses, and (3) threshold analyses. Results: The headroom analysis shows an incremental net monetary benefit (iNMB) of £20,017[£11,299–£28,737] compared to the standard of care due to quality-adjusted life-years (QALY) gains and cost savings. Higher therapeutic efficacy and access for patients with all degrees of hearing loss yields higher iNMBs. Threshold analyses shows that the ceiling price of the therapeutic increases with more severe degrees of hearing loss. Conclusion: NT for ARHL are potentially cost-effective under current willingness-to-pay (WTP) thresholds with considerable room for improvement in the current standard of care pathway. Our model can be used to help decision makers decide which therapeutics represent value for money and are worth commissioning, thereby paving the way for urgently needed NT
    • …
    corecore