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Original Article

Stabilisation of the high-energy orbit for a
non-linear energy harvester with variable
damping

Dongxu Su1, Rencheng Zheng2, Kimihiko Nakano3 and

Matthew P Cartmell4

Abstract

The non-linearity of a hardening-type oscillator provides a wider bandwidth and a higher energy harvesting capability

under harmonic excitations. Also, both low- and high-energy responses can coexist for the same parameter combin-
ations at relatively high excitation levels. However, if the oscillator’s response happens to coincide with the low-energy

orbit then the improved performance achieved by the non-linear oscillator over that of its linear counterpart, could be

impaired. This is therefore the main motivation for stabilisation of the high-energy orbit. In the present work, a schematic

harvester design is considered consisting of a mass supported by two linear springs connected in series, each with a

parallel damper, and a third-order non-linear spring. The equivalent linear stiffness and damping coefficients of the

oscillator are derived through variation of the damper element. From this adjustment the variation of the equivalent

stiffness generates a corresponding shift in the frequency–amplitude response curve, and this triggers a jump from the

low-energy orbit to stabilise the high-energy orbit. This approach has been seen to require little additional energy supply
for the adjustment and stabilisation, compared with that needed for direct stiffness tuning by mechanical means. Overall

energy saving is of particular importance for energy harvesting applications. Subsequent results from simulation and

experimentation confirm that the proposed method can be used to trigger a jump to the desirable state, thereby

introducing a beneficial addition to the performance of the non-linear hardening-type energy harvester that improves

overall efficiency and broadens the bandwidth.
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Introduction

Efficient energy harvesting from ambient environmen-

tal vibration is of great current interest as a means of

providing a free power supply for small-scale elec-

tronics. Compared with other energy sources, vibra-

tions are generally ubiquitous1,2 and one can readily

envisage autonomous wireless sensor nodes and

microsystems being usefully powered by such vibra-

tion, particularly in inaccessible or hostile environ-

ments. This paper presents a comprehensive

analytical and experimental study of the benefits of

stabilisation of the high-energy orbit in a novel hard-

ening-type non-linear energy harvester in order to

improve the efficiency of energy harvesting.

One important feature of conventional vibration-

driven energy harvesters is that they provide max-

imum power when the resonant frequency of the

device matches the environmental excitation fre-

quency.3–7 However, because of the significantly

reduced performance under off-resonance conditions,

and the difficulty in directly matching the linear res-

onance of most practical mechanical devices to the

variable frequencies present in an environmental

ambient vibration source, research effort has been

put into eliminating such shortcomings in linear

devices. For instance, a mechanical bandwidth filter

comprising piezoelectric cantilevers of various

lengths, and with tip masses attached to a common

base, has been considered by Shahruz8,9 as a solution

for increasing the bandwidth of response. Rastegar
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et al.10 designed an ingenious frequency up-conver-

sion mechanism as a concept for two-stage energy

harvesting. The low-frequency vibration of the pri-

mary vibrating unit (i.e. the mass) can be transferred

to high-frequency vibrations of the secondary vibra-

tion units (i.e. the piezoelectric cantilevers), hence pro-

viding a single-frequency robust vibration energy

harvesting solution in low-frequency excitation

scenarios.

Subsequently, the exploitation of non-linear phenom-

enology started to take over with variations of the

Duffing oscillator providing several interesting possibi-

lities.11–16 A hardening-type oscillator was investigated

by Mann et al.17 and it was found that at relatively high

sinusoidal excitation levels, both low and high-energy

responses can coexist for the same parameter combin-

ations. When compared with a linear oscillator using

similar parameters the effectiveness of a non-linear

energy harvesting device can apparently be increased

over certain frequency ranges when operating on the

high-energy orbit. In addition to this technique a mono-

stable non-linear device using the piezoelectric effect was

proposed by Stanton et al.18 The response of this system

showed an increase in bandwidth and the resulting

experimental results verified a distinct capability for out-

performing the linear approach.

In the studies just described slow forward or back-

ward sweeps of the excitation frequency are required as

a precondition in order to stabilise the high-energy orbit,

despite the implementation challenge that this offers in

practice, and in fact this is a formidable requirement for

satisfying ideal harvesting conditions. In order to solve

this problem a load circuit with a switch between the

conventional load, a negative resistance circuit, and a

switching control law dependent on the amplitude of

the oscillator’s response, were introduced and the effects

of such a sub-system studied numerically by Masuda

et al.19 The effect of this was to impart a capability for

self-excitation in order to entrain the oscillator with the

excitation exclusively onto the high-energy orbit.

However, besides the additional electrical energy

required to drive the circuit, switching this approach

also consumes part of the harvested energy in order to

destabilise the low-energy orbit and trigger the jump.

Although the technique works well enough it is not

ideal in the context of energy harvester self sustainability

and overall efficiency.

Another solution to this problem is to vary the stiff-

ness of the energy harvester. Su et al.20 have success-

fully shown in an experiment that it is possible to tune

both of linear and non-linear stiffnesses of a hardening-

type energy harvester in order to trigger a jump to the

high-energy orbit, and to achieve this by adjusting the

distance between magnets used in the proposed design.

A linear DC motor and a lead screw were utilised in

that work to tune the stiffness and the energy consumed

for this form of mechanical tuning was the main short-

coming that was found. A similar effort to tune the

stiffness of a linear vibration-based generator was

reported by Zhu et al.21 Inspired by a linear vibration

isolation system with variable stiffness as proposed by

Lin et al.,22 the method of damping variation is used in

this paper to change the equivalent linear stiffness of a

non-linear harvester for stabilising the high-energy

orbit. It provides an advantage for practical implemen-

tation because of the fact that it consumes much less

energy to vary the damping compared with directly

tuning the stiffness using the mechanical method, espe-

cially when an electromagnetic damper is adopted. It

should be noted that this kind of electrical damper was

successfully used for a self powered vehicle suspension

by Nakano et al.,23 where the electrical damping was

tuned by varying the load resistance in the electrical

drive circuit. A novel non-linear vibrational energy

harvester is designed in this paper whose equivalent

linear stiffness can be changed by just varying the

damping.Moreover, the proposed principle of stabilis-

ing the high-energy orbit is demonstrated by analysis of

the variation in the frequency–amplitude response

curves during the tuning process thereby validating dif-

ferent damping coefficient tuning methods.

The work reported in this paper is organised as

follows. The next section describes the mathematical

model of a stiffness tunable device, and the expres-

sions for equivalent stiffness and damping coefficient

are derived. This is followed by a frequency–response

analysis of the system under harmonic base excitation.

The corresponding influence on the frequency

response during the process of stiffness tuning is

then investigated. Finally, the effectiveness of the

theory is confirmed by a series of simulation and

experimental results.

Methodology

Apparatus illustrations and modelling of the energy

harvester

A schematic diagram for an energy harvester is shown

in Figure 1. It is composed of two linear springs con-

nected in series, with two dampers in parallel with the

springs, and a third order non-linear spring. It should

be noted that the model is a one-degree-of-freedom

system because the linear springs are connected at a

node which is an effectively massless point. The

equivalent linear stiffness of the system can be tuned

by adjusting the damping coefficient of controllable

damper c2.

The governing equations for the motion of the

system shown can be stated as

m €x ¼ �k2ðx� xpÞ � c2ð _x� _xpÞ � k3x
3 þ F ð1aÞ

k1xp þ c1 _xp ¼ k2ðx� xpÞ þ c2ð _x� _xpÞ ð1bÞ

where m is the mass, k1, k2 are the stiffness coefficients

of the springs, and c1, c2 are the damping shown in

Figure 1. x and xp are the displacements of the mass

2 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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and the connection point of the springs, respectively.

The single-frequency harmonic excitation is given by

F ¼ f cos!t.

The harmonic balance method is applied to gener-

ate the responses. The harvester response is presumed

to be accurately modelled by a truncated Fourier

series, where the number of terms dictates the accur-

acy of the intended solution.23 This type of motion

maintains a dominant fundamental frequency at the

frequency of excitation. Hence, equations (2a) and

(2b) can represent the assumed Fourier series expan-

sion of the displacements of the mass, and connection

point, respectively

x ¼ a1 sin!tþ b1 cos!t ð2aÞ

xp ¼ a2 sin!tþ b2 cos!t ð2bÞ

where X2 ¼ a21 þ b21 and X2
p ¼ a22 þ b22. X and Xp there-

fore represent the corresponding displacement ampli-

tudes. Equations (2a) and (2b), and the time

derivatives, are substituted into equations (1a) and

(1b). Ignoring higher order harmonics and equating

the coefficients of the harmonic terms cos!t and

sin!t, four equations are obtained from the mechan-

ical equation as follows

k1a2 � c1b2! ¼ k2 a1 � a2ð Þ � c2 b1 � b2ð Þ! ð3aÞ

k1b2 � c1a2! ¼ k2 b1 � b2ð Þ � c2 a1 � a2ð Þ! ð3bÞ

�ma1!
2 þ k2 a1 � a2ð Þ � c2 b1 � b2ð Þ!

þ
3

4
k3 b21a1 þ a31
� �

¼ 0
ð3cÞ

�mb1!
2 þ k2 b1 � b2ð Þ þ c2 a1 � a2ð Þ!

þ
3

4
k3 a21b1 þ b31
� �

¼ f
ð3dÞ

Equations (3a) and (3b) are solved in terms of a2 and

b2, then substituted into equations (3c) and (3d). The

latter are squared and summed to produce the follow-

ing equation as

9

16
k23X

6þ
3

2
k3

k21k2þk22k1þ c21k2þc22k1
� �

!2

k1þk2ð Þ2þ c1þc2ð Þ2!2
�m!2

� �

X4

þ
k21k2þk22k1þ c21k2þc22k1

� �

!2

k1þk2ð Þ2þ c1þc2ð Þ2!2
�m!2

�

þ
k21c2þk22c1þ c22c1þc21c2

� �

!3

k1þk2ð Þ2þ c1þc2ð Þ2!2

� �2
)

X2¼ f2

ð4Þ

For the equivalent model of the system, the corres-

ponding relationship between the frequency and amp-

litude of the response can be given as24

9

16
k23X

6 þ
3

2
k3 ke �m!2
� �

X4

þ ke �m!2
� �2

þc2e!
2

h i

X2 ¼ f2
ð5Þ

where ke is the equivalent linear stiffness coefficient,

and ce is the equivalent damping coefficient. From

equations (4) and (5), the equivalent stiffness and

damping coefficients can be expressed as

ke ¼
k1k2 k1 þ k2ð Þ þ c21k2 þ c22k1

� �

!2

k1 þ k2ð Þ2þ c1 þ c2ð Þ2!2
ð6Þ

ce ¼
k21c2 þ k22c1 þ c1c2 c1 þ c2ð Þ!2

k1 þ k2ð Þ2þ c1 þ c2ð Þ2!2
ð7Þ

A set of physically reasonable parameters used for

simulation is shown in Table 1. These data are also

used for the numerical examples afterwards.

The equivalent stiffness and damping coefficients as

functions of c2 and the stiffness coefficient ratio k2=k1
are plotted in Figures 2 and 3, respectively. It is noted

that the equivalent stiffness increases with increasing

c2 and that it can be tuned within a larger range when

k2=k1 is smaller, as shown in Figure 2. However, from

Figure 3, it can be shown that the equivalent damping

increases first, then decrease with increasing c2, and

that smaller k2=k1 can cause a greater equivalent

damping when a certain value of the damping coeffi-

cient c2 is applied.

The effects of damping coefficient variation on the

response

The tuning of the damping coefficient can cause a

change in the equivalent stiffness, and then a further

influence on the frequency–amplitude response curve

of the oscillator. The detailed principle of the pro-

posed method is presented in this section. Figure 4

Figure 1. Schematic diagram of the stiffness, tunable, hard-

ening-type energy harvester.

Su et al. 3
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shows the frequency–response curves under different

values of damping coefficient c2 according to equation

(4), while the other parameters shown in Table 1 are

kept constant. Variations in the damping coefficient

have an influence on both the jump-up and jump-

down frequencies. By increasing the linear stiffness,

the frequency–response curve shows a movement to

the right.

The process of triggering the jump is also illu-

strated in Figure 4. It is assumed that the energy har-

vester is oscillating at point A when c2 is equal to

5Ns/m, with this point located in the low-energy

orbit, and then by starting to increase c2, the shape

of the frequency–response curve slowly varies, as

shown in Figure 4. The operating point jumps to

point B when the frequency of the excitation exceeds

the jump-up frequency. The oscillator is now operat-

ing in the preferred orbit. However, variation in the

stiffness also decreases the amplitude of the response.

Thus, following the high-energy orbit, the operating

point subsequently moves to C by decreasing the

damping coefficient c2. It is noted that in the process

of tuning the damping coefficient there is a possibility

that the multi-valued frequency–response curve dis-

appears (for c2 ¼ 20 Ns/m) because the equivalent

damping coefficient initially increases with c2, as

shown in Figure 3. This phenomenon does not influ-

ence the jump from point A to B, but the movement

from point B to C and this is further discussed below.

The jump-up and jump-down frequencies of a

hardening-type, lightly damped Duffing oscillator

with linear viscous damping can be found in the lit-

erature. Brennan et al.24 presented a full set of expres-

sions for the analytical solution using the harmonic

balance method, and made some comparisons with

other expressions. To analyse the tuning process

quantitatively, and for the sake of clarity, the

approach taken by Brennan is followed.

The non-dimensional form of equation (5) can be

expressed as

9

16
�2U6 þ

3

2
� 1��

2
� �

U4

þ 1��
2

� �2
þ 2��ð Þ2

� �

U2 ¼ 1

ð8Þ

where� ¼ !
!n
, !n ¼

ffiffiffiffi

ke
m

q

,U ¼ keX
f
, � ¼ k3f

2

k3e
and � ¼ ce

2m!n
.

To find the analytic expressions for the jump-up

and jump down frequencies, equation (8) is re-

arranged as

U2
�

4 þ 4�2 � 2
� �

U2 �
3

2
�U4


 �

�
2

þ Uþ
3

4
�U3


 �2

¼ 1

ð9Þ

Solving equation (8) and assuming that �2 5 5 1,

the positive solutions are

�1,2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�U2

4
þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�2U2 � 3��2U4
p

U

s

ð10Þ

It should be noted that when the jump-up phenom-

enon occurs, this frequency is weakly dependent upon

the damping ratio. Thus, by setting � ¼ 0 and finding

the point at
d�1,2

dU
¼ 0, the non-dimensional displace-

ment amplitude of the jump-up frequency can be

given as

Uu �
2

3�


 �1=3

ð11Þ

Figure 3. Equivalent damping coefficient as a function of c2
and stiffness coefficient ratio k2=k1.

Figure 2. Equivalent stiffness coefficient as a function of c2
and stiffness coefficient ratio k2=k1.

Table 1. Parameters of the vibrational energy harvester.

Parameter m c1 k1 � F !

Value 1 kg 1:2Nm=s 1000N=m 2:45� 106N=m3 1N 5:2Hz

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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Substituting equation (11) into equation (10) gives

the jump-up frequency

�u �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
3

2

3�

2


 �1=3
s

ð12Þ

To trigger a jump to the high-energy orbit, the

dimensional jump frequency !u should be higher

than the excitation frequency !. Hence, from equa-

tion (12), the minimum equivalent stiffness coefficient

for triggering a jump is defined by

k0e ¼ m!2 �
3

2


 �4=3

�F2
� �1=3

ð13Þ

It is assumed that the electrical damping is small

and c1 5 5 c2. By setting c1 ¼ 0, the corresponding

minimum control damping coefficient can be given by

equation (6) as

c2u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0e k1 þ k2ð Þ2�k1k2 k1 þ k2ð Þ

!2 k1 � k0e
� �

s

ð14Þ

Using equation (14), and substituting equation (13)

into equation (7), the required equivalent damping

coefficient to get the target equivalent stiffness can

be expressed as

ceu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0e k1 þ k2ð Þ2�k1k2 k1 þ k2ð Þ
� �

k1 � k0e
� �

q

! k1 þ k2ð Þ

ð15Þ

To increase the jump-up frequency tuning range as

much as possible, it is necessary to analyse the influ-

ence of the parameters k2=k1 and �F2 on the ratio

between the maximum and minimum jump-up fre-

quencies and this can be expressed as the following

frequency ratio

!umax

!umin

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax þ 3=2ð Þ4=3 �F2ð Þ
1=3

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmin þ 3=2ð Þ4=3 �F2ð Þ
1=3

q ð16Þ

where kmax ¼ k1 when c1 ¼ c2 ¼ 0 and

kmin ¼ k1k2= k1 þ k2ð Þ when c2 ! 1.

Assuming that k1 ¼ 1000N=m, the jump-up fre-

quency ratio as a function of k2=k1 and �F2 is

shown in Figure 5, where �F2 governs the degree of

non-linearity and the excitation amplitude.

It is noted that a smaller stiffness coefficient ratio

k2=k1 is propitious for increasing the tuning range.

Additionally, the weaker non-linearity and smaller

excitation amplitude can achieve a similar effect for

increasing the jump-up frequency tuning range.

As analysed above, it is possible to trigger a jump

to the high-energy orbit by tuning the damping until

the jump-up frequency exceeds the frequency of the

excitation. However, under some conditions it is

necessary to continue to decrease the equivalent stiff-

ness to close to the jump-down frequency, which is the

peak response point of the oscillator. It should be

noted that the equivalent damping of the system

also varies besides the equivalent stiffness in the pro-

cess of damping variation, as shown in Figure 3,

which has strong influence on the occurrence of the

multi-valued frequency–amplitude curve and the

value of the jump-down frequency. Thus, excessive

Figure 4. Frequency–response curve of a hardening-type system.

Su et al. 5
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equivalent damping during the tuning process (point

B to point C shown in Figure 4) may again lead to an

undesirable jump-down to the low-energy orbit.

The condition for the multi-valued frequency–

amplitude curve to occur is defined as24

�5
28

35=2
�3 ð17Þ

Equation (17) can be combined with equations (13)

and (15) to give

�F2
5

25

35=2
c2euk

0
e

m


 �3=2

ð18Þ

It can be seen that the stronger non-linearity and

higher level of excitation amplitude are beneficial for

meeting the requirement determined by equation (18)

for an inflexion to occur. However, this will decrease

the tuning range of the jump-up frequency.

Another condition is that the jump-down fre-

quency should be kept higher than the excitation fre-

quency. The jump-down frequency can be found by

equating the two values in equation (10) to yield

1� 4�2U2 � 3��2U4 ¼ 0 ð19Þ

and rearranging the expression gives

Ud �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
3�

4�2

s

� 1

 !

v

u

u

t ð20Þ

Substituting equation (20) into equation (10) yields

the jump-down frequency of the frequency–amplitude

curve as

�d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
3�

4�2

s

þ 1

 !

v

u

u

t ð21Þ

As shown in Figure 3, a maximum equivalent

damping exists when the damping c2 is large

enough. Substituting equations (6) and (7) into equa-

tion (21) leads to the corresponding damping c2 versus

the minimum jump-down frequency being obtained

from d�d

dc2
¼ 0, which leads to the following expression

c2d ¼
k1 þ k2

!

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9k21 þ 4k1k2 þ 4k22

q

� 3k1

� �

2k1k2 � 3k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9k21 þ 4k1k2 þ 4k22

q

þ 9k21 þ 2k22

v

u

u

u

u

t

ð22Þ

The corresponding equivalent stiffness coefficient

ked and damping coefficient c2d can then be obtained

by substituting equation (22) into equations (6) and

(7), respectively. Thus, the condition for keeping the

oscillating point on the high-energy point can be

expressed as

�dmin5� ð23Þ

Using the same values of k1 and �F2 as previously

obtained, and setting the mass at m ¼ 1 kg, Figure 6

shows the minimum jump-down frequency �dmin as a

function of the stiffness coefficient ratio k2=k1 and

�F2. It is obvious that the higher values of k2=k1
and �F2 can increase the available minimum jump-

down frequency of the system, which also indicates

that the jump-down frequency can also be increased

by employing a greater non-linearity in the stiffness

and excitation amplitude. However, as discussed

above, this will decrease the tunable jump-up fre-

quency range. Therefore, the parameters k2=k1 and

�F2 should be appropriately selected.

Numerical examples

The parameters in Table 1 are used for simulation but

under different excitation level F and stiffness

Figure 5. Jump-up frequency ratio as a function of k2=k1 and

�F2.

Figure 6. Minimum jump-down frequency as a function of

k2=k1 and �F2.
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coefficient k2. Figure 7 presents the tuning process for

the damping coefficient c2, and the corresponding vel-

ocity versus displacement phase trajectories of the

magnetic end mass. As shown in Figure 7(b), the oscil-

lating point jumps to the high-energy orbit with the

increase in the damping coefficient, and then moves

further towards the maximum response point by

decreasing c2 and by setting F and k2 equal to 3N

and 1000N=m, respectively.

However, when the excitation amplitude F is set to

2N, the condition defined by equation (23) cannot be

satisfied, as shown in Figure 8, the minimum

Figure 7. Variation of the damping coefficient and velocity vs displacement phase trajectories of the magnetic end mass (blue line:

damping coefficient instantaneously tuned, and green line: damping coefficient slowly tuned): (a) changing the damping coefficient c2,

(b) response with F and k2 set to 3N and 1000N=m, respectively, (c) response with F and k2 set to 2N and 1000N=m, respectively, and

(d) response with F and k2 set to 3N and 500N=m, respectively.

Figure 8. Jump-down frequency as a function of damping coefficient c2 under various excitation levels and stiffness coefficients k2.
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jump-down frequency is smaller than the excitation

frequency of 5.2Hz. The oscillating point jumps to

the low-energy orbit again during a decrease in the

damping coefficient, which is shown in Figure 7(c)

(green line). A similar response can be seen in

Figure 7(d) (green line) when the stiffness coefficient

k2 is set to 500N=m. The corresponding jump-down

frequency as a function of the damping coefficient c2
is also presented in Figure 8. It establishes that the

smaller value of k2=k1 can decrease the available min-

imum jump-down frequency of the system in the pro-

cess of damping variation.

The condition defined by equation (23) provides a

limitation on the tuning procedure. However, from

Figure 7(c) and (d) (blue line), it is interesting to find

that another approach to triggering a jump to the high-

energy orbit is by instantaneously decreasing the

damping coefficient c2, when the condition defined by

equation (23) is not satisfied. It is known that the

steady-state orbit is also significantly dependent upon

the initial conditions. This is evaluated by using the

basin of attraction obtained by choosing the initial

conditions from the lattice points in the phase plane

and then solving the equation of motion numerically

until the trajectory converges to one of the steady-state

solutions.19 As mentioned previously, by increasing the

controllable damping c2, the operating point can jump

to the high-energy orbit (see point B in Figure 4). Then,

when c2 instantaneously decreases to the initial value

this could be regarded as an initial condition to be

applied to the oscillator, and this initial condition is

caused by the response of the oscillator at point B in

Figure 4. If the initial conditions can lead to the basin

of attraction for the high-energy solution then the

oscillator will stabilise on the corresponding high-

energy orbit. This approach gives a possible solution

to the limitation problem defined by equation (23).

Experimental tests

This section describes the experimental tests per-

formed to validate the proposed method. A picture

of the fabricated energy harvester attached to the

shaker table (m060, IMV Corp., Japan) is shown in

Figure 9, in which three permanent magnets are

arranged in a repulsive configuration to provide the

cubic non-linear stiffness,17 and where the magnetic

end mass attached to the piezoelectric beam is aligned

Figure 9. Experimentation setup: (a) photo of the experimental device and (b) the corresponding schematic diagram.

Figure 11. Cumulative energy on the load resistance.

Figure 10. Measured output voltage on the load resistance.
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with respect to the symmetrically fixed permanent

magnets (top and bottom magnets) in the vertical dir-

ection. The top and bottom magnets are symmetric-

ally attached to sliders on a rail and this configuration

allows the distance to be adjusted equally on each

side, and so the natural frequency of the device is

set to 16.3Hz. It should be mentioned that an elec-

trical damper is favourable for the experiment and

that it can be fabricated using a linear DC motor or

a DC generator coupled with a ball screw so that it

can produce a high level of damping. The damping

could be tuned using a variable resistance,25 with the

advantage that electrical energy can be harvested by

the controllable damper, even during the tuning pro-

cess. However, because of the mass of the linear DC

motor and the equivalent mass of the moment of iner-

tia of the ball screw and rotor, it becomes rather dif-

ficult to achieve a very high damping ratio, as

expected in an ideal experimental device. As an alter-

native, a small piece of ferrous metal is attached to the

beam and an electromagnetic restraining device is

placed under it with a small gap between them. And

the gap is set small enough to minimise the influence

on the response caused by the initial displacement

when the beam is released. The piezoelectric beam

can be regarded as two springs connected at the loca-

tion of the small piece of ferrous metal. The electro-

magnetic restraining device is used to simulate the

conditions that c2 ! 0 and c2 ! 1 by restraining

and releasing the beam, respectively. On the other

hand, the piezoelectric bimorph provides the electrical

damper c1 for energy harvesting. A schematic diagram

of the ideal energy harvester is also presented on the

right-hand side of Figure 9.

Figure 10 presents the measured voltage on a load

resistance of 1M when the energy harvester is sub-

jected to a base excitation of 0.62m/s2 at 18Hz. It

can be seen that the output voltage decreases when

the beam is held by the electromagnet restraining

device, because the oscillating point moves to the

lower frequency side of the frequency–response

curve, and the natural frequency of the system is mea-

sured to be 23.25Hz. When the beam is released by the

electromagnet it can be seen that it jumps to the oscil-

lating point which is close to the jump-down point on

the high-energy orbit, and this validates the proposed

solution to the limitation defined by equation (23).

Figure 11 compares the cumulative generated energy

when the harvester is operated on the low-energy orbit

and the condition with damping variation.

Conclusions

This study has investigated the principle of stabilising

the high-energy response of a non-linear vibrational

energy harvester that is stiffness tunable, by

changing the damping coefficient of the system. The

mathematical model of the energy harvester with

equivalent stiffness and damping coefficients is

derived, and their influence on the frequency–

response curve during the tuning process is also pre-

sented. The ratio between the stiffness coefficients of

the two springs connected in series, the non-linear

stiffness, and the excitation amplitude all apparently

affect the available tuning range of the system, espe-

cially the minimum jump-down frequency when

decreasing the controllable damping coefficient, and

this provides a limitation. However, through numer-

ical study and experimentation it was established that

instantaneous variation of the damping was a possible

approach to the solution. The method proposed in

this paper can trigger a jump from the low-energy

orbit to the high-energy orbit, thus enhancing the

availability of harvestable energy from external har-

monic vibration. Compared with the approach of

self-excitation for stabilising the high-energy orbit

by consuming part of the harvested electrical energy,

and mechanical methods for stiffness tuning,19–21 the

proposed method requires little additional energy

consumption, as demonstrated in this study.

Certainly, a circuit is needed to vary the damping

and this is inevitable for any active tuning method.

However, this proposed method is a potentially easy

way of implementation and can be considered to be a

promising approach to promoting the practical imple-

mentation of a hardening monostable energy harvester.
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