27 research outputs found

    Self-compression of stimulated Raman backscattering by flying focus

    Full text link
    A novel regime of self-compression is proposed for plasma-based backward Raman amplification(BRA) upon flying focus. By using a pumping focus moving with a speed equal to the group velocity of stimulated Raman backscattering(SRBS), only a short part of SRBS which does always synchronize with the flying focus can be amplified. Due to the asymmetrical amplification, the pulse can be directly compressed in the linear stage of BRA. Therefore, instead of a short pulse, the Raman spontaneous or a long pulse can seed the BRA amplifiers. The regime is supported by the 2D particle-in-cell(PIC) simulation without a seed, presenting that the pump pulse is compressed from 26ps to 116fs, with an output amplitude comparable with the case of a well-synchronized short seed. This method provides a significant way to simplify the Raman amplifiers and overcome the issue of synchronization jitter between the pump and the seed

    Generation of subcycle isolated attosecond pulses by pumping ionizing gating

    Full text link
    We present a novel approach named as pumping ionizing gating (PIG) for the generation of isolated attosecond pulses (IAPs). In this regime, a short laser is used to ionize a pre-existing gas grating, creating a fast-extending plasma grating(FEPG) having an ionization front propagating with the velocity of light. A low-intensity long counterpropagating pump pulse is then reflected by a very narrow region of the ionization front, only where the Bragg conditions for resonant reflection is satisfied. Consequently, the pump reflection is confined within a sub-cycle region called PIG, and forms a wide-band coherent IAP in combination with the frequency up-conversion effect due to the plasma gradient. This approach results in a new scheme to generate IAPs fromlong picosecond pump pulses. Three-dimensional (3D) simulations show that a 1.6-ps, 1-{\mu}m pump pulse can be used to generate a 330 as laser pulse with a peak intensity approximately 33 times that of the pump and a conversion efficiency of around 0.1%.These results highlight the potential of the PIG method for generating IAPs with high conversion efficiency and peak intensity.Comment: It provides a new way to generate isolated attosecond pulse(IAP) by a picosecond pump, which has a protential to boost the IAP energy to joule leve

    Development of a CT image analysis-based scoring system to differentiate gastric schwannomas from gastrointestinal stromal tumors

    Get PDF
    PurposeTo develop a point-based scoring system (PSS) based on contrast-enhanced computed tomography (CT) qualitative and quantitative features to differentiate gastric schwannomas (GSs) from gastrointestinal stromal tumors (GISTs).MethodsThis retrospective study included 51 consecutive GS patients and 147 GIST patients. Clinical and CT features of the tumors were collected and compared. Univariate and multivariate logistic regression analyses using the stepwise forward method were used to determine the risk factors for GSs and create a PSS. Area under the receiver operating characteristic curve (AUC) analysis was performed to evaluate the diagnostic efficiency of PSS.ResultsThe CT attenuation value of tumors in venous phase images, tumor-to-spleen ratio in venous phase images, tumor location, growth pattern, and tumor surface ulceration were identified as predictors for GSs and were assigned scores based on the PSS. Within the PSS, GS prediction probability ranged from 0.60% to 100% and increased as the total risk scores increased. The AUC of PSS in differentiating GSs from GISTs was 0.915 (95% CI: 0.874–0.957) with a total cutoff score of 3.0, accuracy of 0.848, sensitivity of 0.843, and specificity of 0.850.ConclusionsThe PSS of both qualitative and quantitative CT features can provide an easy tool for radiologists to successfully differentiate GS from GIST prior to surgery

    The Development of the Chinese Audio & Video Industry: The Development of CHPAVC (China Hualu Panasonic AVC Co., Ltd.)

    Get PDF
    This paper intends to present the development of the audio and video industry in China by illustrating the development of a specific company, CHPAVC (China Hualu Panasonic AVC Co., Ltd.). In 1994, China Hualu Group Co., Ltd. and Matsushita Electronic Industrial Co., Ltd. cofounded CHPAVC so as to address comprehensively the need for the development, production, and sale of digital video, audio, and information processing equipment. The of CHPAVC are described in this paper: first the introduction of technologies, next, the export ofdevelopment stages products, then the independent research, and finally the exceptional design
    corecore