986 research outputs found

    Mott-Peierls Transition in the extended Peierls-Hubbard model

    Full text link
    The one-dimensional extended Peierls-Hubbard model is studied at several band fillings using the density matrix renormalization group method. Results show that the ground state evolves from a Mott-Peierls insulator with a correlation gap at half-filling to a soliton lattice with a small band gap away from half-filling. It is also confirmed that the ground state of the Peierls-Hubbard model undergoes a transition to a metallic state at finite doping. These results show that electronic correlations effects should be taken into account in theoretical studies of doped polyacetylene. They also show that a Mott-Peierls theory could explain the insulator-metal transition observed in this material.Comment: 4 pages with 3 embedded eps figure

    Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data

    Get PDF
    BACKGROUND: NCI60 cell lines are derived from cancers of 9 tissue origins and have been invaluable in vitro models for cancer research and anti-cancer drug screen. Although extensive studies have been carried out to assess the molecular features of NCI60 cell lines related to cancer and their sensitivities to more than 100,000 chemical compounds, it remains unclear if and how well these cell lines represent or model their tumor tissues of origin. Identification and confirmation of correct origins of NCI60 cell lines are critical to their usage as model systems and to translate in vitro studies into clinical potentials. Here we report a direct comparison between NCI60 cell lines and primary tumors by analyzing global gene expression profiles. RESULTS: Comparative analysis suggested that 51 of 59 cell lines we analyzed represent their presumed tumors of origin. Taking advantage of available clinical information of primary tumor samples used to generate gene expression profiling data, we further classified those cell lines with the correct origins into different subtypes of cancer or different stages in cancer development. For example, 6 of 7 non-small cell lung cancer cell lines were classified as lung adenocarcinomas and all of them were classified into late stages in tumor progression. CONCLUSION: Taken together, we developed and applied a novel approach for systematic comparative analysis and integrative classification of NCI60 cell lines and primary tumors. Our results could provide guidance to the selection of appropriate cell lines for cancer research and pharmaceutical compound screenings. Moreover, this gene expression profile based approach can be generally applied to evaluate experimental model systems such as cell lines and animal models for human diseases

    Cloning and functional characterization of the rabbit C-C chemokine receptor 2

    Get PDF
    BACKGROUND: CC-family chemokine receptor 2 (CCR2) is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model. RESULTS: Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled (125)I-mouse JE (murine MCP-1) with a calculated K(d )of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of (125)I-mouse JE (IC(50 )= 2.3 nM) to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis. CONCLUSION: In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1

    On the character of states near the Fermi level in (Ga,Mn)As: impurity to valence band crossover

    Full text link
    We discuss the character of states near the Fermi level in Mn doped GaAs, as revealed by a survey of dc transport and optical studies over a wide range of Mn concentrations. A thermally activated valence band contribution to dc transport, a mid-infrared peak at energy hbar omega approx 200 meV in the ac- conductivity, and the hot photoluminescence spectra indicate the presence of an impurity band in low doped (<<1% Mn) insulating GaAs:Mn materials. Consistent with the implications of this picture, both the impurity band ionization energy inferred from the dc transport and the position of the mid-infrared peak move to lower energies and the peak broadens with increasing Mn concentration. In metallic materials with > 2% doping, no traces of Mn-related activated contribution can be identified in dc-transport, suggesting that the impurity band has merged with the valence band. No discrepancies with this perception are found when analyzing optical measurements in the high-doped GaAs:Mn. A higher energy (hbar omega approx 250 meV) mid-infrared feature which appears in the metallic samples is associated with inter-valence band transitions. Its red-shift with increased doping can be interpreted as a consequence of increased screening which narrows the localized-state valence-band tails and weakens higher energy transition amplitudes. Our examination of the dc and ac transport characteristics of GaAs:Mn is accompanied by comparisons with its shallow acceptor counterparts, confirming the disordered valence band picture of high-doped metallic GaAs:Mn material.Comment: 10 pages, 12 figure

    Chemopreventative celecoxib fails to prevent schwannoma formation or sensorineural hearing loss in genetically engineered murine model of neurofibromatosis type 2

    Get PDF
    Mutations in the tumor suppressor gene NF2 lead to Neurofibromatosis type 2 (NF2), a tumor predisposition syndrome characterized by the development of schwannomas, including bilateral vestibular schwannomas with complete penetrance. Recent work has implicated the importance of COX-2 in schwannoma growth. Using a genetically engineered murine model of NF2, we demonstrate that selective inhibition of COX-2 with celecoxib fails to prevent the spontaneous development of schwannomas or sensorineural hearing loss in vivo, despite elevated expression levels of COX-2 in Nf2-deficient tumor tissue. These results suggest that COX-2 is nonessential to schwannomagenesis and that the proposed tumor suppressive effects of NSAIDs on schwannomas may occur through COX-2 independent mechanisms
    corecore