38 research outputs found

    DIA-datasnooping and identifiability

    Get PDF
    In this contribution, we present and analyze datasnooping in the context of the DIA method. As the DIA method for the detection, identification and adaptation of mismodelling errors is concerned with estimation and testing, it is the combination of both that needs to be considered. This combination is rigorously captured by the DIA estimator. We discuss and analyze the DIA-datasnooping decision probabilities and the construction of the corresponding partitioning of misclosure space. We also investigate the circumstances under which two or more hypotheses are nonseparable in the identification step. By means of a theorem on the equivalence between the nonseparability of hypotheses and the inestimability of parameters, we demonstrate that one can forget about adapting the parameter vector for hypotheses that are nonseparable. However, as this concerns the complete vector and not necessarily functions of it, we also show that parameter functions may exist for which adaptation is still possible. It is shown how this adaptation looks like and how it changes the structure of the DIA estimator. To demonstrate the performance of the various elements of DIA-datasnooping, we apply the theory to some selected examples. We analyze how geometry changes in the measurement setup affect the testing procedure, by studying their partitioning of misclosure space, the decision probabilities and the minimal detectable and identifiable biases. The difference between these two minimal biases is highlighted by showing the difference between their corresponding contributing factors. We also show that if two alternative hypotheses, say (Formula presented.) and (Formula presented.), are nonseparable, the testing procedure may have different levels of sensitivity to (Formula presented.)-biases compared to the same (Formula presented.)-biases

    Family conflict, chaos, and negative life events predict cortisol activity in low‐income children

    Full text link
    Childhood poverty is hypothesized to increase risk for mental and physical health problems at least in part through dysregulation of the hypothalamic‐pituitary‐adrenal axis. However, less is known about the specific psychosocial stressors associated with cortisol reactivity and regulation for children living in poverty. The current study investigates negative life events, household chaos, and family conflict in preschool and middle childhood as potential predictors of cortisol regulation in low‐income 7–10 year olds (N = 242; M age = 7.9 years). Participants were assessed in preschool and participated in a follow‐up assessment in middle childhood, during which diurnal free cortisol and free cortisol reactivity to the Trier Social Stress Test for Children (TSST‐C) were assessed. Household chaos during preschool predicted a more blunted diurnal cortisol slope in middle childhood. Greater negative life events during preschool and greater concurrent family conflict were associated with increased free cortisol reactivity in middle childhood.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144279/1/dev21602_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144279/2/dev21602.pd

    Distributional theory for the DIA method

    Get PDF
    The DIA method for the detection, identification and adaptation of model misspecifications combines estimation with testing. The aim of the present contribution is to introduce a unifying framework for the rigorous capture of this combination. By using a canonical model formulation and a partitioning of misclosure space, we show that the whole estimation–testing scheme can be captured in one single DIA estimator. We study the characteristics of this estimator and discuss some of its distributional properties. With the distribution of the DIA estimator provided, one can then study all the characteristics of the combined estimation and testing scheme, as well as analyse how they propagate into final outcomes. Examples are given, as well as a discussion on how the distributional properties compare with their usage in practice

    Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.

    Get PDF
    Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon

    Observation of heavy spin-orbit excitons propagating in a nonmagnetic background: The case of (Ba,Sr)2YIrO6

    Get PDF
    We present a combined experimental and theoretical study of the elementary magnetic excitations in Ba2YIrO6 and Sr2YIrO6 - the two most intensively discussed candidates for a new type of magnetic instability caused by exciton condensation. For both materials, high-resolution resonant inelastic x-ray scattering (RIXS) at the Ir L3 edge reveals sharp excitations around 370 and 650 meV energy loss, which we identify as triplet and quintet spin-orbit excitons. While the momentum-dependent RIXS spectra reveal that both the triplet and the quintet propagate coherently within the nonmagnetic background of the singlet sites, these modes remain fully gapped. The Ir-Ir exchange interactions in both double perovskites are therefore not strong enough to overcome the magnetic gap and, hence, our results exclude an intrinsic magnetic instability due to a condensation of magnetic excitations for both Ba2YIrO6 and Sr2YIrO6

    Speciation, Luminescence, and Alkaline Fluorescence Quenching of 4-(2-methylbutyl)aminodipicolinic acid (H2MEBADPA)

    Get PDF
    4-(2-Methylbutyl)aminodipicolinic acid (H2MEBADPA) has been synthesized and fully characterized in terms of aqueous phase protonation constants (pKa\u27s) and photophysical measurements. The pKa\u27s were determined by spectrophotometric titrations, utilizing a fully sealed titration system. Photophysical measurements consisted of room temperature fluorescence and frozen solution phosphorescence as well as quantum yield determinations at various pH, which showed that only fully deprotonated MEBADPA2– is appreciably emissive. The fluorescence of MEBADPA2– has been determined to be quenched by hydroxide and methoxide anions, most likely through base-catalyzed excited-state tautomerism or proton transfer. This quenching phenomenon has been quantitatively explored through steady-state and time-resolved fluorescence measurements. Utilizing the determined pKas and quenching constants, the fluorescent intensity of MEBADPA2– has been successfully modeled as a function of pH
    corecore