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Abstract
In this contribution, we present and analyze datasnooping in the context of the DIA method. As the DIA method for the
detection, identification and adaptation of mismodelling errors is concerned with estimation and testing, it is the combination
of both that needs to be considered. This combination is rigorously captured by theDIA estimator. We discuss and analyze the
DIA-datasnooping decision probabilities and the construction of the corresponding partitioning of misclosure space. We also
investigate the circumstances under which two or more hypotheses are nonseparable in the identification step. By means of a
theorem on the equivalence between the nonseparability of hypotheses and the inestimability of parameters, we demonstrate
that one can forget about adapting the parameter vector for hypotheses that are nonseparable. However, as this concerns the
complete vector and not necessarily functions of it, we also show that parameter functions may exist for which adaptation is
still possible. It is shown how this adaptation looks like and how it changes the structure of the DIA estimator. To demonstrate
the performance of the various elements of DIA-datasnooping, we apply the theory to some selected examples. We analyze
how geometry changes in the measurement setup affect the testing procedure, by studying their partitioning of misclosure
space, the decision probabilities and the minimal detectable and identifiable biases. The difference between these twominimal
biases is highlighted by showing the difference between their corresponding contributing factors. We also show that if two
alternative hypotheses, say Hi and H j , are nonseparable, the testing procedure may have different levels of sensitivity to
Hi -biases compared to the same H j -biases.

Keywords Detection, identification and adaptation (DIA) · Datasnooping · Misclosure space partitioning · DIA estimator ·
Minimal detectable bias (MDB) · Minimal identifiable bias (MIB) · Probability of correct identification · Nonseparable
hypotheses

1 Introduction

The DIAmethod for the detection, identification and adapta-
tionofmismodelling errors combines estimationwith testing.
This combination of estimation and testing can be rigorously
captured in the DIA estimator as introduced in (Teunissen
2017). TheDIAmethod has already beenwidely employed in
a variety of applications, such as the quality control of geode-
tic networks and the integrity monitoring of GNSS models,
see, e.g., (DGCC 1982; Teunissen 1990; Salzmann 1995;

B P. J. G. Teunissen
P.Teunissen@curtin.edu.au

S. Zaminpardaz
safoora.zaminpardaz@postgrad.curtin.edu.au

1 Department of Spatial Sciences, GNSS Research Centre,
Curtin University, Perth, Australia

2 Department of Geoscience and Remote Sensing, Delft
University of Technology, Delft, The Netherlands

Tiberius 1998; Perfetti 2006; Khodabandeh and Teunissen
2016; Zaminpardaz et al. 2015).

In this contribution, as an important example of multi-
ple hypothesis testing, datasnooping (Baarda 1967, 1968;
Teunissen 1985) is presented in the context of the DIA
method. In doing so, we make use of the partitioning of
misclosure space based on which we discuss the datas-
nooping decision probabilities and the construction of the
corresponding DIA estimator. Through this partitioning, the
distribution of themisclosure vector can be used to determine
the correct detection (CD) and correct identification (CI)
probabilities of each of the alternative hypotheses, as well as
their corresponding minimal biases, the minimal detectable
bias (MDB) and the minimal identifiable bias (MIB). We
highlight their difference by showing the difference between
their corresponding contributing factors. We also investi-
gate the circumstances under which two or more hypotheses
are nonseparable and discuss the relevant corrective actions
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including ‘remeasurement’, ‘adaptation’ or stating that the
solution is ‘unavailable’. Of these, the adaptation step is the
most involved and will be discussed in more detail.

This contribution is structured as follows. In Sect. 2, we
briefly review the DIA method, describe the steps of DIA-
datasnooping anddefine its correspondingDIAestimator.We
hereby highlight the role played by the chosen partitioning
of misclosure space. In Sect. 3, the decision probabili-
ties of DIA-datasnooping are discussed, whereby between
the following events are distinguished: correct acceptance
(CA), false alarm (FA), correct/missed detection and cor-
rect/wrong identification. It is hereby highlighted that the
MDB provides information about correct detection and not
about correct identification. A high probability of correct
detection does namely not necessarily imply a high proba-
bility of correct identification, unless one is dealing with the
special case of having only one single alternative hypothe-
sis.

As identificationof hypotheses becomesproblematic if the
misclosure vector has the same distribution under different
hypotheses, we study its consequences for the identification
and adaptation steps in Sect. 4. We discuss the corrective
actions one can choose from in terms of ‘remeasurement’,
‘adaptation’ or stating that the solution is ‘unavailable’. Of
these, the adaptation step is the most involved. By means of
a theorem on the equivalence between the nonseparability of
hypotheses and the inestimability of parameters, we demon-
strate that one can forget about adapting the complete vector
of unknowns for hypotheses that are nonseparable. However,
it is demonstrated that there may exist parameter functions
for which adaptation is still possible. It is shown how this
adaptation looks like and how it changes the structure of the
DIA estimator.

To illustrate and explain the performance of the vari-
ous elements of DIA-datasnooping, the theory is applied
to selected examples in Sect. 5. The following three dif-
ferent cases are treated: height-difference observations of
a leveling network, distance measurements of a horizontal
geodetic network and pseudorange measurements between
a single ground station and GPS satellites. We analyze how
geometry changes in the measurement setup affect the test-
ing procedure, including its partitioning of the misclosure
space, and the corresponding CD probabilities (MDB) and
CI probabilities (MIB). We also demonstrate that for a given
bias-to-noise ratio and a false alarm probability, the ordering
of the CD probabilities of the alternative hypotheses is not
necessarily the same as that of their CI probabilities. It is also
shown if two alternative hypotheses, sayHi andH j , are not
distinguishable, that the testing procedure may have differ-
ent levels of sensitivity to Hi -biases compared to the same
H j -biases. Finally, a summary and conclusions are given in
Sect. 6.

2 Detection, identification and adaptation
(DIA)

2.1 DIA in brief

We first formulate the null- and alternative hypotheses,
denoted as H0 and Hi , respectively. Let the observational
model under the null hypothesis be given as

H0 : E(y) = Ax; D(y) = Qyy (1)

with E(.) the expectation operator, D(.) the dispersion oper-
ator, y ∈ R

m the normally distributed random vector of
observables linked to the estimable unknown parameters x ∈
R
n through the design matrix A ∈ R

m×n of rank (A) = n,
and Qyy ∈ R

m×m the positive-definite variance–covariance
matrix of y. The redundancy of H0 is r = m − rank(A) =
m − n.

The validity of the null hypothesis can be violated if the
functional model and/or the stochasticmodel is misspecified.
Here we assume that a misspecification is restricted to an
underparametrization of the mean of y, which is the most
common error that occurswhen formulating themodel. Thus,
the alternative hypothesis Hi is formulated as

Hi : E(y) = Ax + Cibi ; D(y) = Qyy (2)

for some vector Cibi ∈ R
m/{0} such that [A Ci ] is a known

matrix of full rank and rank ([A Ci ]) < m. Ci and bi will
further be specified in detail in Sect. 2.2. The best linear unbi-
ased estimator (BLUE) of x underH0 andHi is, respectively,
denoted by x̂0 and x̂i and given as

x̂0 = A+ y , x̂i = Ā+
i y (3)

with A+ = (AT Q−1
yy A)−1AT Q−1

yy the BLUE-inverse of A,

Ā+
i = ( ĀT

i Q
−1
yy Āi )

−1 ĀT
i Q

−1
yy the BLUE-inverse of Āi =

P⊥
Ci

A and P⊥
Ci

= Im − Ci (CT
i Q−1

yy Ci )
−1CT

i Q−1
yy being the

orthogonal projector that projects, along the range space of
Ci , onto the Q−1

yy -orthogonal complement of the range space
of Ci .

As one often will have to consider more than one single
alternative hypothesis, the statistical model validation ofH0

and k alternatives Hi (i = 1, . . . , k) usually goes along the
following three steps of detection, identification and adapta-
tion (DIA) (Baarda 1968; Teunissen 1990).

1. Detection The validity of the null hypothesis is checked
by virtue of an overall model test, without the need of
having to consider a particular set of alternative hypothe-
ses. If H0 is accepted, x̂0 is provided as the estimate of
x .
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2. Identification In case H0 is rejected, a search is carried
out among the specified alternative hypotheses Hi (i =
1, . . . , k) with the purpose of pinpointing the potential
source of model error. In doing so, two decisions can be
made. Either one of the alternative hypotheses, sayHi , is
confidently identified, or none can be identified as such,
in which case an ‘undecided’ decision is made.

3. Adaptation In caseHi is confidently identified, it is cho-
sen as the new null hypothesis. TheH0-based inferences
are then accordingly corrected and x̂i is provided as the
estimate of x . However, in case the ‘undecided’ decision
is made, then the solution for x is declared ‘unavailable’.

All the information that is needed for the above three steps
is contained in the misclosure vector t ∈ R

r given as

t = BT y; Qtt = BT Qyy B (4)

where the m × r matrix B is a basis matrix of the null space
of AT (cf. 1), i.e., AT B = 0 and rank(B) = r , and Qtt

is the variance matrix of t . Assuming that the observations

are normally distributed as y
Hi∼ N (Ax + Cibi , Qyy) for

i = 0, 1, . . . , k and with C0b0 = 0, the misclosure vector is
then distributed as

t
Hi∼ N (μti = BTCibi , Qtt ), for i = 0, 1, . . . k (5)

As t is zero-mean under H0 and also independent of x̂0, it
provides all the available information useful for validation of
H0 (Teunissen 2017). Thus, an unambiguous testing proce-
dure can be established through assigning the outcomes of t
to the statistical hypotheses Hi for i = 0, 1, . . . , k.

2.2 DIA-datasnooping

So far, no assumption was made about the structure of Ci

in (2). As the problem of screening observations for possi-
ble outliers is an important example of multiple hypothesis
testing (see, e.g., Baarda 1968; Van Mierlo 1980; Hawkins
1980; Teunissen 1985; Parkinson and Axelrad 1988; Sturza
1988; Van der Marel and Kosters 1990; Su et al. 2014), we
will restrict our attention to this important case. We further
assume that only one observation at a time is affected by
an outlier. Thus, in (2), bi is the scalar outlier and Ci takes
the form of a canonical unit vector ci ∈ R

m having 1 as
its i th entry and zeros elsewhere. This leads to having as
many alternative hypotheses as the observations, i.e., k = m.
This procedure of screening each individual observation for
the presence of an outlier is known as datasnooping (Baarda
1968; Kok 1984). The corresponding DIA steps are specified
as follows:

1. Detection Accept H0 if t ∈ P0 with

P0 =
{
t ∈ R

r | ‖t‖2Qtt
≤ kα

}
(6)

in which ‖ · ‖2Qtt
= (·)T Q−1

t t (·) and kα is the user-chosen
α-percentage of the central Chi-square distributionwith r
degrees of freedom. IfH0 is accepted, then x̂0 is provided
as the estimate of x . Otherwise, go to step 2.

2. Identification Form Baarda’s test statistic as (Baarda
1967; Teunissen 2000)

wi = cTti Q
−1
t t t√

cTti Q
−1
t t cti

, i = 1, . . . , k (7)

in which cti = BT ci . Since ci is a canonical unit vector,
cti is then the i th column of matrix BT . Select Hi �=0 if
t ∈ Pi �=0 with

Pi �=0 =
{
t ∈ R

r/P0| |wi | = max
j∈{1,...,k} |w j |

}
(8)

3. Adaptation If Hi is selected, then x̂i is provided as the
estimate of x .

Note, since t = BT ê0, with ê0 = y − Ax̂0, that the above
procedure can be formulated by means of the least-squares
residual vector ê0 as well, thus providing a perhaps more rec-
ognizable form of the testing procedure (Teunissen 2000).
Also note that we assume the variance–covariance matrix
Qyy to be known. Variance-component estimation (Teunis-
sen and Amiri-Simkooei 2008) with further modification
of the partitioning of misclosure space would need to be
included in case of unknown variance components. In the
simplest case of a single unknown variance of unit weight,
the datasnooping partitioning gets determined by only the
w j statistics, which then will have a studentized distribu-
tion instead of a standard normal one (Koch 1999; Teunissen
2000).

Finally note that the vector ofmisclosures t is not uniquely
defined. This, however, does not affect the testing outcome as
both the detector ‖t‖2Qtt

and Baarda’s test statistic wi remain
invariant for any one-to-one transformation of themisclosure
vector. Therefore, instead of t , one can for instance also work
with

t̄ = Q
− 1

2
t t t (9)

which, given (5), is distributed as t̄
Hi∼ N (μt̄i = Q

− 1
2

t t μti , Ir ).
The advantage of using t̄ over t lies in the ease of visualizing
certain effects due to the identity-variancematrix of t̄ .Wewill
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make use of this in Sect. 5. The partitioning corresponding
with t̄ is then characterized through

P0 =
{
t̄ ∈ R

r | ‖t̄‖2 ≤ kα

}
(10)

P i �=0 =
{
t̄ ∈ R

r/P0| |c̄Ti t̄ | = max
j∈{1,...,k} |c̄Tj t̄ |

}
(11)

with c̄i = Q
− 1

2
t t cti /‖cti ‖Qtt being a unit vector and

‖ · ‖2 = (·)T (·). As such, P0 contains t̄’s inside and on a
zero-centered sphere with the radius of

√
kα whereas P i �=0

includes all t̄’s outside the mentioned sphere which, among
c̄ j for j = 1, . . . , k, make the smallest angle with c̄i . The
border between P i �=0 and P j �=0 is then the locus of the vec-
tors t̄ ∈ R

r/P0 which make the same angle with c̄i and c̄ j .
Therefore, the partitioning of R

r is driven by kα and the rel-
ative orientation of c̄ j for j = 1, . . . , k with respect to each
other.

2.3 DIA estimator

As the above three steps show, DIA-datasnooping combines
estimation with testing. By using a canonical model for-
mulation and a partitioning of misclosure space, a unifying
framework to rigorously capture the probabilistic properties
of this combination was presented in Teunissen (2017). It
was there also shown how the combined estimation-testing
scheme could be captured in one single DIA estimator. The
DIA estimator is a function of x̂ j ( j = 0, 1, . . . , k) and the
misclosure vector t , and it is given as

x̄ =
k∑
j=0

x̂ j p j (t) (12)

with p j (t) being the indicator function of region P j , i.e.,
p j (t) = 1 for t ∈ P j and p j (t) = 0 elsewhere. As x̄ is
linear in x̂ j , the DIA estimator of θ = FT x with F ∈ R

n×p

is given as

θ̄ =
k∑
j=0

θ̂ j p j (t) (13)

with θ̂ j = FT x̂ j . For a general probabilistic evaluation of
the DIA estimator, we refer to Teunissen (2017), but see also
Teunissen et al. (2017). Here we note, however, that expres-
sions (12) and (13) are only valid under the assumption that
the set of regions Pi (i = 0, 1, . . . , k) forms a partitioning
of misclosure space, i.e., ∪k

i=0Pi = R
r and Pi ∩ P j = ∅

for any i �= j . Note the second condition is considered for
the interior points of the distinct regions Pi . The regions Pi

are allowed to have common boundaries since we assume the
probability of t lying on one of the boundaries to be zero. That

the set of regions Pi (i = 0, 1, . . . , k) forms a partitioning
of misclosure space requires that the canonical unit vectors
of the individual hypotheses satisfy certain conditions.

Lemma 1 (Datasnooping partitioning) The m+1 regions Pi

of (6) and (8) form a partitioning of misclosure space iff
cti ∦ ct j for any i �= j .

Proof See Appendix. �

Itwill be clear that the conditions of the aboveLemmamay

not always be fulfilled. The question is then which strategy
to follow to deal with such a situation. Should one decide for
‘undecidedness’ if cti ‖ ct j for some i �= j , or should one
re-measure all such involved observables, or would it still
be possible to perform an adaptation? An answer to these
questions is provided in Sect. 4, where we consider the more
general case and not restrictCi to be the canonical unit vector
ci . First, however, we discuss the testing probabilities that are
involved in the detection and identification step.

3 Detection versus identification

3.1 The probabilities

As shown by (6), (7) and (8), the decisions of the testing
procedure are driven by the outcome of themisclosure vector
t . The probabilities of their occurrence depend on which of
the hypotheses is true. IfHi is true, then the decision is correct
if t ∈ Pi , and wrong if t ∈ P j �=i . We therefore discriminate
between the following events

CA = (t ∈ P0|H0) = correct acceptance
FA = (t /∈ P0|H0) = false alarm
MDi = (t ∈ P0|Hi ) = missed detection
CDi = (t /∈ P0|Hi ) = correct detection
WIi = (t ∈ ∪k

j �=0,iP j |Hi ) = wrong identification
CIi = (t ∈ Pi |Hi ) = correct identification

(14)

With ∗ = {CA,FA,MDi ,CDi ,WIi ,CIi }, we denote the
probability of ∗ by P∗ satisfying

PCA + PFA = 1

PMDi + PCDi = 1

PWIi + PCIi = PCDi (15)

Computation of P∗ requires information about the misclo-
sures probability density function (PDF) which is given in
(5). Here, it is important to note the difference between the
CD andCI probabilities, i.e., PCDi ≥ PCIi . Theywould be the
same if there is only one alternative hypothesis, sayHi , since
thenPi = R

r/P0. Analogous to the CD and CI probabilities,
we have the concepts of the minimal detectable bias (MDB)
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(Baarda 1968) and the minimal identifiable bias (MIB) (Teu-
nissen 2017). In the following, the difference between the
MDB (PCDi ) and the MIB (PCIi ) is highlighted by showing
the difference between their corresponding contributing fac-
tors.

3.2 Minimal detectable bias (MDB)

The MDB of the alternative hypothesis Hi is defined as the
smallest value of |bi | that can be detected given a certain CD
probability. Therefore, the MDB is an indicator of the sensi-
tivity of the detection step. Under Hi �=0 with the definition
of P0 in (6), the probability of correct detection reads

PCDi = P(t /∈ P0|Hi ) = P(‖t‖2Qtt
> kα|Hi ) (16)

The MDB of Hi can then be computed by inverting the
above equation for a certain CD probability. With (5), we

have ‖t‖2Qtt

Hi∼ χ2(r , λ2i ) with λ2i = ‖μti ‖2Qtt
. For cer-

tain PFA = α, PCDi = γCD and r , one can compute
λ2i = λ2(α, γCD, r) from the Chi-square distribution, and
then the MDB is (Baarda 1968; Teunissen 2000)

|bi,MDB| = λ(α, γCD, r)

‖cti ‖Qtt

(17)

which shows that for a given set of {α, γCD, r}, the MDB
depends on ‖cti ‖Qtt . One can compare theMDBs of different
alternative hypotheses for a given set of {α, γCD, r}, which
provides information on how sensitive is the rejection ofH0

for the biases the size of |bi,MDB|,s. The smaller the MDB
|bi,MDB| is, the more sensitive is the rejection ofH0.

3.3 Minimal identifiable bias (MIB)

It is important to realize that the MDB provides information
about correct detection and not correct identification. A high
probability of correct detection does therefore not necessarily
imply a high probability of correct identification (cf. 15),
unless we have the special case of only a single alternative
hypothesis. In case ofmultiple hypotheses, one can define the
MIB of the alternative hypothesisHi as the smallest value of
|bi | that can be identified given a certain CI probability. It is
an indicator of the sensitivity of the identification step. The
MIB, denoted by |bi,MIB|, can be computed through inverting

PCIi = P(t ∈ Pi |Hi ) =
∫

Pi

ft (τ |Hi ) dτ (18)

for a given CI probability. The above probability is an r -fold
integral over the complex region Pi . Thus, the inversion of
(18) is not as trivial as that of (16). The MIB needs then to

be computed through numerical simulations, see, e.g., Teu-
nissen (2017), pp. 73 and Robert and Casella (2013). From
PCDi ≥ PCIi , one can infer that |bi,MDB| ≤ |bi,MIB| given
PCIi = γCD. The identification of mismodeling errors is thus
more difficult than their detection (Imparato et al. 2018).

Although computation of (18) is not trivial, we can still
assess the behavior of CI probability in relation to the con-
tributing factors. To simplify such assessment, we make use
of t̄ instead of t and present the CI probability as

PCIi = P(t̄ ∈ P i |Hi ) =
∫

P i

ft̄ (τ |Hi ) dτ (19)

With thedefinitionofP i in (11) and E(t̄ |Hi ) = (bi‖cti ‖Qtt )c̄i ,
the CI probability, for a given value of bi , is dependent on
the following three factors

– P i : As the integrand function in (19) is positive for all τ ∈
R
r , then the integral value will increase as P i expands.

– The orientation of c̄i w.r.t. the borders of P i : The unit
vector c̄i , lying within the borders of P i , determines the
direction of E(t̄ |Hi ) about which the PDF ft̄ (τ |Hi ) is
symmetric. The following lemma elaborates the role of
the orientation of c̄i in CI probability for r = 2. For this
case, the regionsP i in (11) are defined inR

2. Each region
has then three borders of which one is curved (with P0)
and two are straight lines on either sides of c̄i .

Lemma 2 (PCIi as function of the orientation of c̄i ) Let βi be
the angle between the two straight borders of P i and let βi,1

be the angle between c̄i and the closest straight border on its
right side (see Fig. 2). For a given βi , kα and ft̄ (τ |Hi ), the
CI probability depends on βi,1. We then have

1

2
βi = argmax

βi,1

PCIi (βi,1) (20)

Proof See the Appendix. �

Therefore, for r = 2, for a given βi , kα and ft̄ (τ |Hi ), the
CI probability reaches its maximum if c̄i is parallel to the
bisector line of the angle between the two straight borders of
P i .

– ‖cti ‖Qtt : The scalar ‖cti ‖Qtt determines themagnitude of
E(t̄ |Hi ). Therefore, the larger the value of ‖cti ‖Qtt , the
further the center of ft̄ (τ |Hi ) gets from the origin along
c̄i , and the larger the probability mass of ft̄ (τ |Hi ) inside
P i will become.

We will use this insight in the contributing factors of the CI
probability to explain some of the phenomena that we come
across in our numerical analysis in Sect. 5.
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4 Nonseparable hypotheses

4.1 Identifying nonseparable hypotheses

As any testing procedure is driven by the misclosure vec-
tor, identification of hypotheses becomes problematic if the
misclosure vector has the same distribution under different
hypotheses. According to (5) this happens when for two dif-
ferent hypotheses, sayHi and H j (i �= j),

BT Ci = BT C j Xi, j for some invertible Xi, j ∈ R
q×q (21)

In such a case, the misclosure vector t remains insensitive
for the differences between Hi and H j , as a consequence
of which we have Pi = P j . One can then not distinguish
between the two hypothesesHi andH j in the identification
step. If this is the case and t ∈ Pi = P j , one may consider
the following:

1. Remeasurement If in case of datasnooping, Hi and H j

are singled out in the identification step, then it is one
of the two observables, yi = cTi y or y j = cTj y, that is
suspected to contain a blunder or outlier. To remedy the
situation, one may then decide to replace both yi and y j
by their remeasured values.

2. Adaptation If remeasurement is not an option, one might
think that adaptation of x̂0 would be an option by extend-
ing the designmatrix to [A Ci C j ], so as to cover both the
hypothesesHi andH j . But, as the theorem below shows,
this is unfortunately not possible as x will then become
inestimable. Also note, despite the nonseparability of the
twohypotheses, that adaptation on either [ACi ]or [AC j ]
should not be pursued. Such adaptation will still produce
a biased result if done for the wrong hypothesis.

3. UnavailabilityWithout remeasurement or adaptation, the
remaining option is to declare a solution for x to be
unavailable.

In the following theorem, we show an equivalence between
the nonseparability of hypotheses and the inestimability of
parameters.

Theorem 1 (Nonseparable hypotheses and inestimable param-
eters) Let [A B] be an invertible matrix, with A of order
m × n and B of order m × (m − n) satisfying BT A = 0.
Furthermore, for any i �= j and i, j = 1, . . . , l, let Ci be
full-rank matrices of order m × q with m − n > q such that
rank ([Ci C j ])> q and rank ([A Ci ]) = n + q. Then for
any i �= j and i, j = 1, . . . , l, for some invertible matrix
Xi, j ∈ R

q×q

BT Ci = BT C j Xi, j (22)

iff

∃ X ∈ R
n×q/{0} : [A Ci C j ]

⎡
⎣

X
− Iq
Xi, j

⎤
⎦ = 0 (23)

implying that the extended design matrix [A Ci C j ] is rank-
deficient.

Proof See the Appendix. �

The above theorem conveys that if the alternative hypotheses
Hi with i = 1, . . . , l are not distinguishable, then extending
the design matrix A by any two or more matrices Ci with
i = 1, . . . , l will result in a rank-deficient design matrix
and therefore make unbiased estimability of the parameter
vector x impossible. The conclusion reads therefore that if
remeasurement is not an option and x is the parameter vec-
tor for which a solution is sought, the issue of nonseparable
hypotheses should already be tackled at the designing phase
of the measurement experiment.

4.2 Adaptation for estimable functions

The above theorem has shown that one can forget about
adapting x̂0 for hypotheses that are nonseparable. This con-
cerns, however, the complete vector x and not necessarily
functions of x . It could still be possible that some relevant
components of x or some relevant functions of x remain
estimable, despite the rank-deficiency of the extended design
matrix. The following theorem specifies which parameters
remain estimable after the mentioned extension of the design
matrix as well as presents the corresponding adaptation step
for these estimable parameters.

Theorem 2 (Adaptation for nonseparable hypotheses)
(i) Estimability: Let Ci , with i = 1, . . . , l, be full-rank matri-
ces of order m × q with m − n > q satisfying (22) and (23).
Also, let C ∈ R

m×l1q be a matrix formed by putting l1 matri-
ces Ci column-wise next to each other. Then θ = FT x, with
F ∈ R

n×p, is unbiased estimable under the extended model

E(y) = [A C]
[
x
b

]
; D(y) = Qyy (24)

iff

FT V = 0 (25)

in which V is a basis matrix of the null space of C⊥T
A, i.e.,

C⊥T
A V = 0, and C⊥ is a basis matrix of the orthogonal

complement of the range space of C.
(ii) Adaptation: The BLUE of θ = FT x under (24) and its
variance matrix, denoted as θ̂ and Q

θ̂ θ̂
, respectively, can be

written in adapted form as
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θ̂ = θ̂0 + M y

Q
θ̂ θ̂

= Q
θ̂0 θ̂0

+ M Qyy M
T (26)

with θ̂0 = FT x̂0, Q θ̂0 θ̂0
= FT Qx̂0 x̂0F and where M =

FT Ā−P⊥
A , with P⊥

A = Im − AA+, Ā = P⊥
C A, P⊥

C =
Im − CC+ with C+ = (CT Q−1

yy C)−1CT Q−1
yy , Ā− =

S [( ĀS)T Q−1
yy ( ĀS)]−1( ĀS)T Q−1

yy , with S a basis matrix of
which the range space is complementary to that of V .

Proof See the Appendix. �

Note if one opts for the adaptation of θ̂0 as given above, that
one cannot use the expression for the DIA estimator as given
in (13) anymore. For example, if the hypotheses Hi , with
i = 1, · · · , l, are indistinguishable, i.e., P1 = . . . = Pl , the
adaptation according to (26) implies that the DIA estimator
in (13) changes to

θ̄ = θ̂0 p0(t) + θ̂ p1(t) +
k∑

j=l+1

θ̂ j p j (t) (27)

Thus, the k+1 terms in the sum are now reduced to k− l+2,
with θ̂ being the BLUE under (24).

5 Numerical analysis

In this section, we apply the theory of the previous sec-
tions to some selected examples so as to illustrate and
explain the performance of the various decision elements
in DIA-datasnooping. The insight so obtained will also help
us appreciate some of the more complex intricacies of the
theory. The following three different cases are considered:
height-difference observations of a leveling network, dis-
tance measurements of a horizontal geodetic network and
pseudorange measurements between a single ground station
and GPS satellites. We analyze and illustrate how geometry
changes in the measurement setup affect the testing proce-
dure, including its partitioning of the misclosure space, and
the corresponding CD probabilities (MDB) and CI probabil-
ities (MIB). The CD probability under Hi (i = 1, . . . , k)
is computed based on (16) from χ2(r , λ2i ), whereas the CI
probability underHi (i = 1, . . . , k) is computed as described
in the Appendix.

5.1 Leveling network

Suppose that we have two leveling loops containing n ≥ 2
height-difference observations each and sharing one obser-
vationwith each other (see Fig. 1). For such leveling network,
two misclosures can be formed stating that the sum of obser-
vations in each loop equals zero. Assuming that all the obser-

Leveling Loop B

n+1

Leveling Loop C

n+1

Fig. 1 A leveling network consisting of two leveling loopswith n obser-
vations each and one shared observation (blue)

vations are uncorrelated and of the same precision σ , a mis-
closure vector t and its variance matrix Qtt can be formed as

t =
[
1

n︷ ︸︸ ︷
1 1 · · · 1

n︷ ︸︸ ︷
0 0 · · · 0

1 0 0 · · · 0 1 1 · · · 1

]⎡
⎣
yA
yB
yC

⎤
⎦

Qtt = σ 2
[
n + 1 1
1 n + 1

] (28)

where yA is the observation shared between the two level-
ing loops, and yB and yC the n-vectors of observations of the
leveling loops B and C, respectively. The number of datas-
nooping alternative hypotheses for the above model is equal
to 2n + 1. But it will be clear of course that not all of them
are separately identifiable. Looking at the structure of BT in
(28), it can be seen that out of 2n+ 1 vectors cti (columns of
BT ), only the following three are nonparallel

ctA =
[
1
1

]
, ctB =

[
1
0

]
, ctC =

[
0
1

]
(29)

which implies that in each leveling loop excluding the shared
observation yA, an outlier on each of the observations is
sensed in the same way by the vector of misclosures. In other
words, the testing procedure cannot distinguish between the
outliers on the observations in yB, and between those on the
observations in yC. Therefore, among the 2n + 1 alternative
hypotheses, we retain three: HA corresponding with yA, HB

corresponding with one of the observations in yB and HC

corresponding with one of the observations in yC.

5.1.1 Misclosure space partitioning

Given (29), the datasnooping partitioning of the misclo-
sure space is formed by four distinct regions Pi with i ∈
{0,A, B,C}. For the sake of visualization, instead of t , we
work with t̄ (cf. 9). The datasnooping partitioning, as men-
tioned earlier, is then driven by the relative orientation of c̄A,
c̄B and c̄C (cf. 11). The angles between these unit vectors are
computed as
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Fig. 2 Visualization of the datasnooping testing procedure defined in
Sect. 2.2 for the leveling network shown in Fig. 1 assuming α = 0.05
andσ = 5mm. [Top]Datasnooping partitioning of themisclosure space

R
2 correspondingwith t̄ (cf. 9). [Bottom] The graphs of CD (solid lines)

and CI probability (dashed lines) of different alternative hypotheses as
function of bias-to-noise ratio

� (c̄A, c̄B) = � (c̄A, c̄C) = cos−1
√

n

2(n + 1)

� (c̄B, c̄C) = cos−1 −1

n + 1
(30)

As (30) suggests, when n → ∞, the angles � (c̄A, c̄B) and
� (c̄A, c̄C) go to 45◦, and the angle � (c̄B, c̄C) goes to 90◦.
Figure 2 demonstrates the impact of n on the misclosure
space partitioning given α = 0.05, r = 2 and σ = 5mm.
Using different shades of gray color, the first row of Fig. 2
shows, for n = 2, n = 10 and n = 100, the partitioning of
the misclosure space formed by P i with i ∈ {0,A, B,C}.

5.1.2 CD and CI probabilities

According to (17), for a given λ(α, γCD, r), the MDB
depends only on ‖cti ‖Qtt . For the leveling network charac-
terized in (28) and its corresponding vectors cti in (29), we
have

‖ctA‖Qtt = σ−1

√
2

n + 2

‖ctB‖Qtt = ‖ctC‖Qtt = σ−1

√
n + 1

n(n + 2)
(31)

which clearly shows that for a given set of {α, γCD, r}, smaller
HA-biases can be detected compared to HB and HC. Equiv-
alently, it can be stated that for a given {α, r} and bi = b, the
CDprobability ofHA is larger than that ofHB andHC. That is
because each observation in yB and yC contributes to only one
leveling loop while yA contributes to two leveling loops, thus
being checked by the observations of both loops. The solid
curves in Fig. 2 (second row) depict PCDi as function of the
bias-to-noise ratio |b|/σ . The dark gray graphs correspond
with HA, while the light gray graphs correspond with HB

and HC. These graphs can be used as follows. For a certain
bi = b, one can compare the corresponding PCDi of different
alternative hypotheses. One can also take the reverse route
by comparing the MDB of different alternative hypotheses
for a certain PCDi = γCD. In agreement with (31), the solid
dark gray graphs always lie above the solid light gray ones.
As the number of observations increases in each loop (n ↑),
the corresponding PCDi decreases for a given Hi -bias. This
is due to the fact that the variance of the misclosure vector is
an increasing function of the number of observations in each
loop (see 28). The lower the precision of the misclosures,
the lower is the sensitivity of the testing procedure to a given
bias in an observation.
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Fig. 3 Comparing two testing scheme for the leveling network in Fig. 1
assuming n = 10,α = 0.05 and σ = 5mm. [Top]Datasnooping testing
procedure defined in Sect. 2.2. [Bottom] The testing procedure defined
by (32). [Left] Partitioning of the misclosure space corresponding with

t̄ . [Right] The graphs of CD (solid lines) and CI probabilities (dashed
lines) of different alternative hypotheses as function of bias-to-noise
ratio

The dashed curves in Fig. 2 (second row) depict PCIi as
function of |b|/σ . These curves (PCIi ) always lie below their
solid counterparts (PCDi ). Like the solid graphs, these dashed
graphs can be used either for comparing the MIB of differ-
ent alternative hypotheses given a certain PCIi = γCI, or
for comparing the corresponding PCIi of different alternative
hypotheses given a certain bi = b. We note that despite the
CD probability of HA being always larger than that of HB

and HC, the CI probability of HA is not always larger than
that of HB and HC. Depending on the number of measure-
ments in each loop n, if |b|/σ is smaller than a certain value,
thenwe have PCIA < PCIB = PCIC . This discrepancy between
the behavior of CD probability and that of CI probability as
function of |b|/σ for a given α is due to the fact that while
PCDi is driven only by ‖cti ‖Qtt , PCIi is in addition driven by
P i and the orientation of c̄i w.r.t. the straight borders of P i

(cf. 19). Looking at the first row of Fig. 2, we note thatPA has
smaller area compared to PB and PC. Therefore, |b| should
be large enough such that ‖ctA‖Qtt > ‖ctB‖Qtt = ‖ctC‖Qtt

can compensate for PA being smaller than PB and PC.

5.1.3 Impact of partitioning on CI probability

As was mentioned, PCIi depends on P i , the orientation of
c̄i and the magnitude of ‖cti ‖Qtt . While the last two factors
are driven by the underlying model, the first one depends
on the testing procedure. Our above conclusions about the
CI probability will then change if we go for another testing
scheme. For example, let P0 be defined by (10) and

P i �=0 =
{
t̄ ∈ R

2/P0| |dTi t̄ | = max
k∈{A,B,C}

|dTk t̄ |
}

(32)

where dA = c̄A, dB = R(−60◦)c̄A and dC = R(60◦)c̄A with
Rθ being the counterclockwise rotation matrix. This testing
scheme leads to PA, PB and PC to be of the same shape. In
addition, while c̄A is parallel to the bisector line of the angle
between the two straight borders of PA, c̄B and c̄C are close
to one of the straight borders of their corresponding region.
This combined with the fact that ‖ctA‖Qtt > ‖ctB‖Qtt =
‖ctC‖Qtt lead us to the conclusion that PCIA > PCIB = PCIC
holds for any given bias b. Figure 3 shows the difference
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between the testing procedure based on (11) and (32), in
terms of misclosure space partitioning [left] and CD and CI
probability [right].

5.2 Horizontal geodetic network

Consider a horizontal geodetic network containing m ref-
erence points from which we measure distances toward
an unknown point to determine its horizontal coordinates.
Assuming that all the measurements are uncorrelated and of
the same precision, the design matrix and the observations
variance matrix of the linearized model under H0 read

A =
⎡
⎢⎣

− uT1
...

− uTm

⎤
⎥⎦ , Qyy = σ 2 Im (33)

where the unit direction 2-vector from the unknown point to
the reference point (i = 1, . . . ,m) is denoted by ui . In this
observational model, the redundancy is r = m − 2 revealing
that the misclosure vector t is of dimension m − 2.

5.2.1 Misclosure space partitioning

For the model in (33), the angles between the corresponding
c̄i vectors are computed as

cos � (c̄i , c̄ j ) = − uTi C
−1
xx u j√

(1 − ‖ui‖2Cxx
) × (1 − ‖u j‖2Cxx

)
(34)

which is a consequence of BQ−1
t t BT = Q−1

yy −Q−1
yy AQxx AT

Q−1
yy with Qxx = σ 2 C−1

xx and Cxx = ∑m
k=1 uku

T
k . Assum-

ing that the horizontal geodetic network comprises m = 4
reference points, Fig. 4 presents the same information as
Fig. 2 but for geodetic networks corresponding with (33).
The first row shows the orientation of vectors ui . The stan-
dard deviation of the distance measurements is considered
to be σ = 5mm, and the false alarm is set to α = 0.05. In
(a), the geometry of the measuring points leads to a cofac-
tor matrix of Cxx = 2 I2 of which the substitution in (34)
gives cos � (c̄i , c̄ j ) = − cos � (ui , u j ). Given that the angle
between consecutive vectors ui is 45◦, the four regionsP i �=0

have then the same shape. Moving the reference point D to
a new location such that uD = −uA as illustrated in (b),
the two regions PB and PC, as Theorem 1 states, become
identical. The proof is given as follows. Let uD = p uA
(p = ±1). As the vectors cti are the columns of BT and
given that BT A = 0, we have

(ctA + p ctD)uTA + ctBu
T
B + ctCu

T
C = 0 (35)

Multiplying both sides of the above equation with u⊥
A from

the right, we get

ctC = − uTB u
⊥
A

uTC u
⊥
A

ctB (36)

which means that ctB ‖ ctC , thus c̄B ‖ c̄C and PB = PC. If in
addition, we have uC = q uB (q = ±1), then (35) simplifies
to

(ctA + p ctD)uTA + (ctB + q ctC)u
T
B = 0 (37)

Multiplying the above once with u⊥
A and once with u⊥

B from
the right, then we get ctA ‖ ctD and ctB ‖ ctC , thus c̄A ‖ c̄D
and c̄B ‖ c̄C. From (b) to (c), as the angle between uB and uC
decreases, the errors in the measurements A and D become
less distinguishable from each other, but better separable
from those in the measurements of B and C.

5.2.2 CD and CI probabilities

The illustrations on the third row of Fig. 4 show the graphs
of PCDi (solid lines) and PCIi (dashed lines) under all the
four alternative hypotheses Hi with i ∈ {A, B,C,D}. The
CD probability PCDi corresponding with (33) for a given α,
r and a bias value |b| is driven by (cf. 17)

‖cti ‖Qtt = σ−1

⎡
⎣1 − 1

det(Cxx )

m∑
j=1

sin2 � (ui , u j )

⎤
⎦

1
2

(38)

with det(.) being the determinant operator. In (a), owing
to 45◦ angle between the consecutive vectors ui , we have
‖cti ‖Qtt = ‖ct j ‖Qtt for any i �= j , hence PCDi = PCD j

for any given value of bias |b| and i �= j . Furthermore, as
a consequence of having a symmetric partitioning, we also
have PCIi = PCI j for any given value of bias |b| and i �= j .
In (b) and (c), given that uA ‖ uD and uA ⊥ uC, we have
‖ctA‖Qtt = ‖ctB‖Qtt = ‖ctD‖Qtt conveying that the hypothe-
ses HA, HB and HD have the same CD probability. HA and
HD have, in addition, the same CI probability since PA and
PD have the same shape and also the orientation of c̄A inside
PA is the same as that of c̄D inside PD.

In (b) and (c), HB is not distinguishable from HC. For
these hypotheses, although not identifiable from each other,
we still define CI probability as PCIB = P(t̄ ∈ PB|HB) and
PCIC = P(t̄ ∈ PB|HC). It can be seen that, although HB is
not distinguishable from HC, they are different in both the
CD and CI probabilities. Also, the testing procedure is more
sensitive to the biases in yB compared to the same biases in
yC. This is due to the fact that the observation of C contributes
to the misclosure vector less than the observation of B. The
contribution of themeasurement ofC to themisclosure vector
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Fig. 4 Visualization of the datasnooping testing procedure defined in
Sect. 2.2 for the horizontal geodetic networks shown in the first row
assuming α = 0.05 and σ = 5mm. [Top] Geometry of the four refer-
ence points w.r.t. the point of which the coordinates are to be estimated.

[Middle] Datasnooping partitioning of the misclosure space R
2 corre-

sponding with t̄ (cf. 9). [Bottom] The graphs of CD (solid lines) and CI
probability (dashed lines) of different alternative hypotheses as function
of bias-to-noise ratio

depends on the relative orientation of uB w.r.t. uC. In case uB
is parallel to uA and uD, themeasurement of the pointCwould
have zero contribution to the misclosure vector and cannot
be screened at all. As the angle between uB and uC decreases,
the mentioned contribution increases, so does the sensitivity
of the testing procedure to the biases in the measurement of
C.

Note that for the geometries shown in (b) and (c), if
the misclosure vector lies in PB, it cannot be inferred that
whether yB or yC is biased. For adaptation, one may extend
the design matrix A to [A cB cC], which would be of rel-

evance if the parameters of interest remain estimable (see
Theorem 2). As cB and cC are canonical unit vectors, then
[cB cC]⊥T

A is a matrix achieved by removing the rows of A
corresponding with yB and yC as

[cB cC]⊥T
A =

[− uTA
− uTD

]
=

[
0 − 1
0 1

]
(39)

which clearly shows that the x-coordinate is not estimable.
However, the above adaptation strategy is still of relevance
if one is interested in the y-coordinate.

123



S. Zaminpardaz, P.J.G. Teunissen

A summary of the above qualitative findings in relation to
the geometry of the measuring points is given as follows

– If | cos � (ui , ui+1)| = cos 45◦ for any i = 1, 2, 3, then

• | cos � (c̄i , c̄i+1)| = cos 45◦
• P i has the same shape of P j for any i �= j
• PCDi = PCD j and PCIi = PCI j for any i �= j

– If uA ‖ uD, then

• PB = PC

• PCDA = PCDD and PCIA = PCID

– If uA ‖ uD and uB ‖ uC, then

• PA = PD and PB = PC

• PA has the same shape of PB

• PCDi = PCD j and PCIi = PCI j for any i �= j

– If uA ‖ uD and uC ⊥ uA, then

• PCDA = PCDB = PCDD

• PCDB ≥ PCDC and PCIB ≥ PCIC .
• If � (uB, uC)decreases, so does the differences PCDB−

PCDC and PCIB − PCIC .

– If uA ‖ uB, uA ‖ uD and uC ⊥ uA, then PCDC = PCIC = 0.

5.3 GPS single-point positioning

Let the pseudorange observations ofm GPS satellites be col-
lected by one single receiver to estimate its three-dimensional
position coordinates and clock error. Assuming that all the
code observations are uncorrelated and of the same precision
σ , the corresponding linearized observational model, also
known as the single-point positioning (SPP) model, under
H0 is characterized through the following full-rank design
matrix and the observations variance matrix

A =
⎡
⎢⎣

− uT1 1
...

...

− uTm 1

⎤
⎥⎦ , Qyy = σ 2 Im (40)

in which the 3-vectors ui (i = 1, . . . ,m) are the receiver-
satellite unit direction vectors. The first three columns of
A correspond with the receiver North-East-Up coordinate
increments while the last one corresponds with the receiver
clock error increment. Given that the design matrix A is of
order m × 4, the redundancy of the SPP model is r = m − 4.

5.3.1 Misclosure space partitioning

With the SPP model in (40), the angles between the vectors
c̄i are computed as

cos � (c̄i , c̄ j ) = − 1
m − (ui − ū)TC−1

xx (u j − ū)√(
m−1
m − ‖ui − ū‖2Cxx

)
×

(
m−1
m − ‖u j − ū‖2Cxx

) (41)

in which Cxx = ∑m
k=1(uk − ū)(uk − ū)T and ū =

1
m

∑m
k=1 uk . Assuming that six GPS satellites are transmit-

ting signals to a single receiver (m = 6), twomisclosures can
be formed, i.e., r = 2. Figure 5, for three different geome-
tries of these satellites (first row), shows the partitioning of
the misclosure space (second row). The satellite geometries
in (a) and (b) are artificialwhile that in (c), except for the name
of satellites, is a real GPS geometry at Perth, Australia.

In (a), despite having six pseudorange observations, the
partitioning is formed by five distinct regions. The regions
corresponding with H5 and H6 coincide each other, i.e.,
P5 = P6, which can be explained as follows. The lines-
of-sight of the four satellites G1, G2, G3, and G4 lie on a
cone of which the symmetry axis is indicated as the red cir-
cle. Therefore, we have

uTi d = c; i = 1, . . . , 4 (42)

with d the unit 3-vector of the symmetry axis of the men-
tioned cone and c the cosine of the half the vertex angle of
the cone. The extended SPP design matrix [A c5 c6] will
then satisfy

[A c5 c6]

⎡
⎢⎢⎣

d
c

uT5 d − c

uT6 d − c

⎤
⎥⎥⎦ = 0 (43)

Therefore, the 6×6matrix [A c5 c6] is rank-deficient which,
according to Theorem 1, implies that the two alternative
hypotheses H5 and H6 are not separable. If the misclo-
sure vector lies in P5, it cannot be inferred that whether
observation y5 or y6 is biased. For adaptation, one may use
the above-extended design matrix in case the parameters of
interest remain estimable (see Theorem 2). As c5 and c6 are
canonical unit vectors, then [c5 c6]⊥T

A is a matrix achieved
by removing the last two rows of A. Based on such reduced
design matrix, according to (42), the position solution in the
direction of d is indeterminate. Since d is vertically oriented,
the horizontal coordinates (East-North) remain estimable
based on the first four rows of A.

In (b), all the alternative hypotheses are distinguishable.
In (c), the two vectors c̄3 and c̄5 are almost parallel which is
due to the satellites G1, G2, G4 and G6 forming a cone-like
geometry of which the axis is indicated by a red circle.

5.3.2 CD and CI probabilities

The graphs of PCDi and PCIi for i = 1, . . . , 6 as function of
the bias-to-noise ratio are given in the third row of Fig. 5. One
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(a) (b) (c)

Fig. 5 Visualization of the datasnooping testing procedure defined in
Sect. 2.2 for the SPP assuming α = 0.05 and σ = 30cm. [Top] Sky-
plot views of the satellite geometries. The six blue circles in each panel
denote the skyplot position of the satellites. The red circle denotes the
skyplot position of the symmetry axis of the cone formed by the satel-

lites Gi with i = 1, 2, 3, 4 in a, i = 1, 2, 3, 5, 6 in b and i = 1, 2, 4, 6
in c. [Middle] Datasnooping partitioning of the misclosure space R

2

corresponding with t̄ (cf. 9). [Bottom] The graphs of CD (solid lines)
and CI probabilities (dashed lines) of different alternative hypotheses
as function of bias-to-noise ratio

notes that the signature of PCDi is generally different from
PCIi . For example, in (a), we have PCD2 > PCD3 while PCI3 >

PCI2 . That is because PCIi , in addition to ‖cti ‖Qtt , is also
driven by P i and the orientation of c̄i within P i . In (a), we
also note that although H5 and H6 cannot be distinguished,
the testing procedure has a different sensitivity to the H5-
and H6-biases. For the same bias-to-noise ratios, we have
PCD5 > PCD6 and PCI5 > PCI6 , which can be explained as
follows. The difference between PCD5 and PCD6 for a given
bias-to-noise ratio lies in the difference between ‖ct5‖Qtt and

‖ct6‖Qtt (cf. 17). Given that cti is the i th column of BT and
given (42), multiplying the corresponding SPP design matrix
A with BT from left and with [dT , c]T from right, we arrive
at

ct5 = −uT6 d − c

uT5 d − c
ct6 (44)

According to the skyplot in (a), c = cos 40◦ and uT5 d =
cos 60◦ and uT6 d = cos 80◦, which means that ‖ct5‖Qtt >
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‖ct6‖Qtt , thus PCD5 > PCD6. Since c̄5 ‖ c̄6 andP5 = P6, the
difference between PCI5 and PCI6 for a given bias-to-noise
ratio depends only on the difference between ‖ct5‖Qtt and
‖ct6‖Qtt . Therefore, ‖ct5‖Qtt > ‖ct6‖Qtt will also lead to
PCI5 > PCI6 .

In (b), all the satellites except G4 locate almost on a cone
with its axis shown as the red circle. If the satellites G1, G2,
G3, G5 and G6 would have formed a perfect cone, then the
contribution of the G4 observation to the misclosures would
have been identically zero. This can be shown by proving that
the fourth column of BT , i.e., ct4 , becomes a zero-vector. If
the unit vectors ui for i �= 4 lie on a cone with d being its
symmetry axis, then for some scalar c ∈ Rwe have uTi d = c
(cf. 42). Multiplying the corresponding SPP design matrix A
with BT from left and with [dT , c]T from right, we arrive at

ct4 (uT4 d − c) = 0 (45)

Since u4 does not lie on the mentioned cone, then uT4 d �= c
implying that ct4 = 0, thus PCD4 = PCI4 = 0. However, as
the line-of-sights to the satellites G1, G2, G3, G5 and G6
do not form a perfect cone, i.e., uTi �=4 d ≈ c, the observation
of satellite G4 has a nonzero contribution to the misclosure
vector resulting in nonzero values for PCD4 and PCI4 . It can
be seen that PCD4 and PCI4 are significantly smaller than,
respectively, PCDi �=4 and PCIi �=4 . To understand the distinct
behavior of PCD4 compared to PCDi �=4 , we look at ‖cti ‖Qtt

given as

‖cti ‖Qtt = σ−1
[

m

m − 1
+ ‖ui − ū �=i‖2Cxx �=i

]− 1
2

(46)

where Cxx �=i = ∑m
k �=i (uk − ū �=i )(uk − ū �=i )

T and ū �=i =
1

m−1

∑m
k �=i uk . The quadratic expression within the brackets

can be worked out using the eigenvalue decomposition of
Cxx �=i as

‖ui − ū �=i‖2Cxx �=i
=

3∑
j=1

λ−1
j,i

[
(ui − ū �=i )

T v j,i

]2
(47)

in which λ j,i and v j,i for j = 1, 2, 3 are, respectively, the
eigenvalues and the corresponding eigenvectors of Cxx �=i .
Assuming λ1,i ≥ λ2,i ≥ λ3,i , for a given value of ‖ui −ū �=i‖,
(47) achieves its maximumwhen (ui −ū �=i ) ‖ v3,i . In the fol-
lowing, we check λ3,i (the minimum eigenvalue), the angle
between (ui − ū �=i ) and v3,i (eigenvector corresponding with
the minimum eigenvalue), and ‖ui − ū �=i‖ for i = 1, . . . , 6.

– λ3,i : For i = 4, since uTj �=4 d ≈ c, it can be concluded
that v3,4 is almost parallel to d and λ3,4 ≈ 0. This implies
that λ−1

3,4 is extremely large. For i �= 4, among the five
remaining satellites, still there are four unit vectors which

satisfy uTj �=i,4 d ≈ c. Therefore, the eigenvector v3,i �=4

does not deviate too much from the direction d. How-
ever, due to the presence of satellite G4 not lying on the
mentioned cone, λ3,i �=4 is much larger than zero, imply-
ing that λ−1

3,i �=4 is much smaller than λ−1
3,4.

– The angle between (ui − ū �=i ) and v3,i : As shown in the
skyplot in (b), while u4 is almost parallel to v3,4, ui �=4

makes an almost 56◦ with v3,i �=4 (almost parallel to d).
For the geometry shown in (b), ū �=4 is almost parallel
to v3,4, whereas this is not the case with ū �=i (i �= 4).
Therefore, we have (u4 − ū �=4) ‖ v3,4.

– ‖ui − ū �=i‖: We can write ‖ui − ū �=i‖2 = 1+ ‖ū �=i‖2 −
2uTi ū �=i . Since ū �=i is computed based on five out of six
unit direction vectors, its norm does not change toomuch
for different i . Therefore, ‖ui − ū �=i‖ gets its minimum
value for i = 4 as u4 is almost parallel to ū �=4. However,
‖u4− ū �=4‖ < ‖ui − ū �=i‖ is overcompensated by λ−1

3,4 >

λ−1
3,i .

Given the above explanation, ‖u4−ū �=4‖2Cxx �=4
is much larger

than ‖ui −ū �=i‖2Cxx �=i
, and ‖ct4‖Qtt is thusmuch smaller com-

pared to ‖cti ‖Qtt . This explains that the CD probability ofH4

is much smaller than that ofHi �=4. AsP4 and the orientation
of c̄4 within it are similar to those ofHi with i = 1, 3, 6 and
poorer thanHi with i = 2, 5, then ‖cti �=4‖Qtt > ‖ct4‖Qtt can
also explain why PCIi �=4 > PCI4 .

6 Conclusion and summary

In this contribution,we presented datasnooping in the context
of the DIA method, discussed its decision probabilities for
detection and identification and showedwhat options one has
available when two or more of the alternative hypotheses are
nonseparable.

In our discussion, we emphasized the central role that is
played by the partitioning of misclosure space, both in the
formation of the decision probabilities and in the construction
of the DIA estimator. In case of datasnooping, the partition-
ing is determined by the row vectors of the basis matrix of the
null space of AT . Through this partitioning, the distribution
of the misclosure vector can be used to determine the correct
detection (CD) and correct identification (CI) probabilities of
each of the alternative hypotheses. These probabilities can be
‘inverted’ to determine their corresponding minimal biases,
the minimal detectable bias (MDB) and the minimal identifi-
able bias (MIB). We highlighted their difference by showing
the difference between their corresponding contributing fac-
tors. In particular, it should be realized that theMDBprovides
information about correct detection and not about correct
identification. A high probability of correct detection does
namely not necessarily imply a high probability of correct
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identification, unless one is dealing with the special case of
having only one single alternative hypothesis.

In the identification step, one has to ascertain whether
or not all the hypotheses are identifiable. Identification of
hypotheses becomes problematic if the misclosure vector
has the same distribution under different hypotheses. We
discussed the options one can choose from in terms of
‘remeasurement’, ‘adaptation’ or stating that the solution
is ‘unavailable’. Of these, the adaptation step is the most
involved. By means of an equivalence between the nonsep-
arability of hypotheses and the inestimability of parameters
(cf. Theorem 1), we demonstrated that one can forget about
adapting x̂0 for hypotheses that are nonseparable. However,
as this concerns the complete vector x and not necessarily
functions of x , we also demonstrated that functions of x may
exist for which adaptation is still possible (cf. Theorem 2). It
was shown how this adaptation looks like and how it changes
the structure of the DIA estimator.

We applied the theory to selected examples so as to illus-
trate and explain the performance of the various elements of
DIA-datasnooping. Three different cases were discussed in
detail: height-difference observations of a leveling network,
distance measurements of a horizontal geodetic network and
pseudorange measurements between a single ground sta-
tion and GPS satellites. We analyzed and illustrated how
geometry changes in the measurement setup affect the test-
ing procedure, including its partitioning of the misclosure
space, and the corresponding CD probabilities (MDB) and
CI probabilities (MIB).We also demonstrated that for a given
bias-to-noise ratio and a false alarm probability, the ordering
of the CD probabilities of the alternative hypotheses is not
necessarily the same as that of their CI probabilities. And
we showed, if two alternative hypotheses, say Hi and H j ,
are not distinguishable, that the testing procedure may have
different levels of sensitivity to Hi -biases compared to the
same H j -biases.
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Appendix

Proof of Lemma 1 That ∪k
i=1Pi = R

r/P0 follows from the
fact that since any t ∈ R

r/P0 produces a vector of k test
statistics wi (i = 1, . . . , k), for any such t there is a region
Pi in which it lies for some i . ‘if’ part: If cti ∦ ct j for any

i �= j , then only one of the test statistics wi (i = 1, . . . , k)
will produce the maximum absolute value. To prove this,
let |wi | = |w j | = max

k={1,...,m}|wk | for i �= j and for some

t ∈ R
r/P0. Then

(‖cti ‖−1
Qtt

cti − ‖ct j ‖−1
Qtt

ct j )
T Q−1

t t t = 0 (48)

from which follows that t = 0 cannot be a solution since
t ∈ R

r/P0, nor can t be orthogonal to Q−1
t t (‖cti ‖−1

Qtt
cti −

‖ct j ‖−1
Qtt

ct j ) since the probability of that occurrence is zero,
thus leaving as only possibility that cti ‖ ct j , which con-
tradicts our earlier assumption of cti ∦ ct j . Therefore, any
t ∈ R

r/P0 lies in only one of the regions Pi (i = 1, . . . , k),
revealing that ∪k

i=1Pi = R
r/P0 and Pi ∩ P j = ∅ for any

i �= j . As a result, the m + 1 regions Pi form a partitioning
of R

r .
For the ‘only if’ part we have: Let us assume that cti ‖ ct j

for i �= j . Then, given (7), we have |wi | = |w j | for any
t ∈ R

r . This reveals that Pi = P j which contradicts our
earlier assumption of Pi ∩ P j = ∅. Therefore, cti ∦ ct j for
any i �= j . �

Proof of Lemma 2 Consider the 2-vector t̄ with a length of l̄
which makes an angle of β̄i with c̄i measured counterclock-
wise. Therefore, we have

t̄ = l̄

[
cos β̄i − sin β̄i

sin β̄i cos β̄i

]
c̄i (49)

Given the above equation and the orientation of c̄i w.r.t. the
straight borders of P i in (11), one can write

P i �=0 =
{
t̄ ∈ R

2| t̄ = l̄

[
cos β̄i − sin β̄i

sin β̄i cos β̄i

]
c̄i , l̄ >

√
kα, β̄i ∈ Li

}
(50)

with

Li = {β̄i ∈ R| β̄i ∈ ([−βi,1, βi − βi,1] ∪ [π − βi,1, π + βi − βi,1]
)} (51)

With (49), one can also obtain the joint PDF of [l̄, β̄i ]T from
ft̄ (τ |Hi ) through the PDF transformation rule as

fl̄,β̄i (l, β|Hi )= l ft̄ (τ (l, β)|Hi )

= l

2π
exp

{
− 1

2
(l2+‖μt̄i ‖2−2l‖μt̄i ‖ cosβ)

}

(52)

with ‖μt̄i ‖ = |bi | ‖cti ‖Qtt . Equations (50) and (52) enable
us to express the CI probability in terms of l̄ and β̄i as

PCIi =
∫

P i

ft̄ (τ |Hi ) dτ

=
∫

Li

∫ ∞
√
kα

fl̄,β̄i (l, β) dldβ (53)
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Substitution of (52) into (53), and then taking the derivative
w.r.t. βi,1, we achieve

∫ ∞
√
kα

l

2π
exp

{
− 1

2
(l2 + ‖μt̄‖2)

}

× [exp {l‖μt̄‖ cosβi,1
} − exp

{
l‖μt̄‖ cos(βi − βi,1)

}

+ exp
{−l‖μt̄‖ cosβi,1

} − exp
{−l‖μt̄‖ cos(βi − βi,1)

}] dl (54)

Setting the above derivative equal to zero, a set of solutions
for βi,1 is given by

βi,1 = kπ + 1

2
βi , k ∈ Z (55)

Since βi,1 < π , then the only valid solution is βi,1 = 1
2βi .

To check whether this critical point is the maximizer of (53),
we compute the derivative of the expression in (54) at βi,1 =
1
2βi , which is

∫ ∞
√
kα

l2‖μt̄‖
2π

exp

{
−1

2
(l2 + ‖μt̄‖2)

}

×
[
−2 sin

βi

2
exp

{
l‖μt̄‖ cos βi

2

}

+2 sin
βi

2
exp

{
−l‖μt̄‖ cos βi

2

}]
dl (56)

Since 0 < βi < π , then sin βi
2 > 0 and cos βi

2 > 0. These,
in tandem with l‖μt̄‖ > 0 and the fact that exp{·} is a ‘posi-
tive’ increasing function, imply that the expression in (56) is
‘negative.’ Thus, βi,1 = 1

2βi is the maximizer of (53). �

Proof of Theorem 1 We start with the ‘if’ part: If there exists
a nonzero matrix X ∈ R

n×q such that A X = Ci − C j Xi, j

for some invertible matrix Xi, j ∈ R
q×q , then multiplying

both sides of the equation with BT from left gives

BT Ci = BT C j Xi, j (57)

For the ‘only if’ partwe have: If BT Ci = BT C j Xi, j for
some invertible matrix Xi, j ∈ R

q×q , then two conclusions
can be made: 1. Ci = C j Xi, j which is not possible as it
contradicts our assumption that rank ([Ci C j ]) > q; 2. (Ci −
C j Xi, j ) ∈ R(A). Therefore, there exists a nonzero matrix
X ∈ R

n×q such that A X = Ci − C j Xi, j or equivalently

[A Ci C j ]
⎡
⎣

X
−Iq
Xi, j

⎤
⎦ = 0 (58)

�

Proof of Theorem 2 Since θ is a linear function of x and not b,
we reduce the observational model in (24) to one containing

only the unknown parameters x as

E(C⊥T
y) = C⊥T

A x; D(y) = C⊥T
QyyC

⊥ (59)

where C⊥ is a basis matrix of the orthogonal complement
of the range space of C . Let V be a basis matrix of the null
space of C⊥T

A. Furthermore, let S be a full-rank matrix
of which the range space is complementary to that of V .
Therefore, [S V ] ∈ R

n×n is an invertible matrix, thus a
basis matrix ofR

n . This indicates that any vector x ∈ R
n can

be parametrized as

x = S xS + V xV (60)

(i) We now show that θ is unbiased estimable under (59)
iff FT V = 0. ‘if’ part: If FT V = 0, then θ = FT S xS .
Substituting (60) into (59), as C⊥T

A V = 0, gives us

E(C⊥T
y) = C⊥T

A S xS; D(y) = C⊥T
QyyC

⊥ (61)

which shows that xS as well as any linear function of it like
θ are unbiased estimable under (59). ‘only if’ part: Equation
(61) shows that xV is not estimable. Therefore, for θ = FT x
to be estimable in (59), it should be a function of only xS and
not xV , i.e., FT V = 0 and θ = FT S xS .

(ii) The BLUE of xS based on (61) is as follows

x̂S = (ST ĀT Q−1
yy ĀS)−1ST ĀT Q−1

yy y (62)

inwhich Ā = P⊥
C A and P⊥

C = Im−C(CT Q−1
yy C)−1CT Q−1

yy .
It can be shown (Teunissen and Khodabandeh 2013) that the
BLUE of xS based on (1), x̂S0 , is linked to x̂S as

x̂S0 = x̂S − Qx̂S ,t Q
−1
t t t (63)

where t and Qtt are given in (4) and Qx̂S ,t is the covariance
between x̂S and t which can be computed given (4) and (62).
Multiplying both sides of the above equation with FT S from
left gives the link between θ̂ = FT S x̂S and θ̂0 = FT S x̂S0 .
The link between their variances is also obtained using the
error propagation law. �


Numerical evaluation of PCIi in (18): In this study, given
Eqs. (5)–(8), the CI probability underHi (cf. 18) is computed
through the following steps.

– Generate n samples of t from the normal distribution
N (μti = bi cti , Qtt ).

– Compute ‖t‖2Qtt
for all the samples. Single out those sam-

ples satisfying ‖t‖2Qtt
> kα (i.e., t /∈ P0) and collect them

in a set denoted by �CD.
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– For each sample in �CD, compute the w-tests w j for
j = 1, . . . , k in (7). Count the number of samples for
which |wi | ≥ |w j | for any j �= i (i.e., t ∈ Pi ), and
denote it by nCI.

– Compute the CI probability under Hi as PCIi = nCI
n . �
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