48 research outputs found

    Enhanced temporal resolution in femtosecond dynamic-grating experiments

    Get PDF
    Recording of gratings by interference of two pump pulses and diffraction of a third probe pulse is useful for investigating ultrafast material phenomena. We demonstrate, in theory and experiment, that the temporal resolution in such configurations does not degrade appreciably even for large angular separation between the pump pulses. Transient Kerr gratings are generated inside calcium fluoride (CaF2) crystals by two interfering femtosecond (pump) pulses at 388 nm and read out by a Bragg-matched probe pulse at 776 nm. The solution to the relevant coupled-mode equations is well corroborated by the experimental results, yielding a value of the Kerr coefficient of ~ 4.4×10^(–7) cm^2/GW for CaF2

    Femtosecond holography in lithium niobate crystals

    Get PDF
    Spatial gratings are recorded holographically by two femtosecond pump pulses at 388 nm in lithium niobate (LiNbO3) crystals and read out by a Bragg-matched, temporally delayed probe pulse at 776 nm. We claim, to our knowledge, the first holographic pump-probe experiments with subpicosecond temporal resolution for LiNbO3. An instantaneous grating that is due mostly to the Kerr effect as well as a long-lasting grating that results mainly from the absorption caused by photoexcited carriers was observed. The Kerr coefficient of LiNbO3 for our experimental conditions, i.e., pumped and probed at different wavelengths, was approximately 1.0×10^-5 cm²/GW

    Chronic adolescent stress increases exploratory behavior but does not appear to change the acute stress response in adult male C57BL/6 mice

    Get PDF
    Chronic stress exposure in adolescence can lead to a lasting change in stress responsiveness later in life and is associated with increased mental health issues in adulthood. Here we investigate whether the Chronic Social Instability (CSI) paradigm influences the behavioral and molecular responses to novel acute stressors in mice, and whether it alters physiological responses influenced by the noradrenergic system. Using large cohorts of mice, we show that CSI mice display a persistent increase in exploratory behaviors in the open field test alongside small but widespread transcriptional changes in the ventral hippocampus. However, both the transcriptomic and behavioral responses to novel acute stressors are indistinguishable between groups. In addition, the pupillometric response to a tail shock, known to be mediated by the noradrenergic system, remains unaltered in CSI mice. Ultra-high performance liquid chromatography analysis of monoaminergic neurotransmitter levels in the ventral hippocampus also shows no differences between control or CSI mice at baseline or in response to acute stress. We conclude that CSI exposure during adolescence leads to persistent changes in exploratory behavior and gene expression in the hippocampus, but it does not alter the response to acute stress in adulthood and is unlikely to alter the function of the noradrenergic system

    Deep-learning-based identification, tracking, pose estimation and behaviour classification of interacting primates and mice in complex environments

    Full text link
    The quantification of behaviors of interest from video data is commonly used to study brain function, the effects of pharmacological interventions, and genetic alterations. Existing approaches lack the capability to analyze the behavior of groups of animals in complex environments. We present a novel deep learning architecture for classifying individual and social animal behavior, even in complex environments directly from raw video frames, while requiring no intervention after initial human supervision. Our behavioral classifier is embedded in a pipeline (SIPEC) that performs segmentation, identification, pose-estimation, and classification of complex behavior, outperforming the state of the art. SIPEC successfully recognizes multiple behaviors of freely moving individual mice as well as socially interacting non-human primates in 3D, using data only from simple mono-vision cameras in home-cage setups

    A complete pupillometry toolbox for real-time monitoring of locus coeruleus activity in rodents

    Get PDF
    The locus coeruleus (LC) is a region in the brainstem that produces noradrenaline and is involved in both normal and pathological brain function. Pupillometry, the measurement of pupil diameter, provides a powerful readout of LC activity in rodents, primates and humans. The protocol detailed here describes a miniaturized setup that can screen LC activity in rodents in real-time and can be established within 1–2 d. Using low-cost Raspberry Pi computers and cameras, the complete custom-built system costs only ~300 euros, is compatible with stereotaxic surgery frames and seamlessly integrates into complex experimental setups. Tools for pupil tracking and a user-friendly Pupillometry App allow quantification, analysis and visualization of pupil size. Pupillometry can discriminate between different, physiologically relevant firing patterns of the LC and can accurately report LC activation as measured by noradrenaline turnover. Pupillometry provides a rapid, non-invasive readout that can be used to verify accurate placement of electrodes/fibers in vivo, thus allowing decisions about the inclusion/exclusion of individual animals before experiments begin

    The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions

    Full text link
    The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1−/−^{-/-} mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1−/−^{-/-} mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation

    Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    Get PDF
    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion

    Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test

    No full text
    <p>Stressful experiences are linked to anxiety disorders in humans. Similar effects are observed in rodent models, where anxiety is often measured in classic conflict tests such as the open-field test. Spontaneous rearing behavior, in which rodents stand on their hind legs to explore, can also be observed in this test yet is often ignored. We define two forms of rearing, supported rearing (in which the animal rears against the walls of the arena) and unsupported rearing (in which the animal rears without contacting the walls of the arena). Using an automated open-field test, we show that both rearing behaviors appear to be strongly context dependent and show clear sex differences, with females rearing less than males. We show that unsupported rearing is sensitive to acute stress, and is reduced under more averse testing conditions. Repeated testing and handling procedures lead to changes in several parameters over varying test sessions, yet unsupported rearing appears to be rather stable within a given animal. Rearing behaviors could therefore provide an additional measure of anxiety in rodents relevant for behavioral studies, as they appear to be highly sensitive to context and may be used in repeated testing designs.</p
    corecore