44 research outputs found

    Standard ganciclovir dosing results in slow decline of cytomegalovirus viral loads

    Get PDF
    BACKGROUND: Cytomegalovirus (CMV) can cause severe disease, including rejection in transplant recipients. Ganciclovir and its oral prodrug valganciclovir have been used as first-line therapy for CMV disease in transplant recipients. The exposure targets of ganciclovir are not exactly known, and toxicity and resistance have interfered with ganciclovir therapy. OBJECTIVES: To evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) of ganciclovir in transplant recipients. METHODS: We used patient data from a previous observational study on ganciclovir therapeutic drug monitoring (TDM) in prophylaxis and therapy. The ganciclovir concentrations and CMV viral loads were determined during routine clinical care. The PK/PD population modelling and simulations were done with non-parametric methodology using the Pmetrics program. RESULTS: Eighty-five patients were included in the PK modelling. The final PK model was a two-compartment model with first-order absorption and elimination. A subset of 17 patients on CMV therapy were included in the PD modelling. A median of 4 (range 2–8) viral loads were obtained per patient. A simulation of 10 000 patients showed that an approximately 1 log(10) reduction of CMV viral load will be observed after 12.5 days at the current recommended dose. CONCLUSIONS: The developed linked PK/PD population model and subsequent PD simulations showed slow decline of CMV viral load and it appears that dosing of (val)ganciclovir in this study might have been inadequate to achieve fast reduction of viral load. It is clear that further studies are needed to specify the PD effects of ganciclovir by performing systematic measurements of both ganciclovir concentrations and CMV viral loads

    Therapeutic Drug Monitoring of Anti-infective Drugs:Implementation Strategies for 3 Different Scenarios

    Get PDF
    BACKGROUND: Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS: The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS: The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS: To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources

    Therapeutic drug monitoring of ganciclovir:Where are we?

    Get PDF
    Ganciclovir is the mainstay of therapy for the prophylaxis and treatment of Cytomegalovirus. However, therapy with this antiviral agent is hindered by side effects such as myelosuppression, which often leads to therapy cessation. Underdosing, as an attempt to prevent side effects, can lead to drug resistance and therapy failure. Therapeutic drug monitoring (TDM) has been used to overcome these problems. The purpose of this narrative review was to give an overview of ganciclovir TDM, available assays, population pharmacokinetic models, and discuss the current knowledge gaps. METHODS: For this narrative review, a nonsystematic literature search was performed on the PubMed database in April 2021. The following search terms were used: ganciclovir, valganciclovir, pharmacokinetics, pharmacodynamics, population pharmacokinetics, therapeutic drug monitoring, bioassay, liquid chromatography coupled with tandem mass spectrometry, liquid chromatography, chromatography, spectrophotometry, and toxicity. In addition, the reference lists of the included articles were screened. RESULTS: The most common bioanalysis method identified was liquid chromatography coupled with tandem mass spectrometry. There are different models presenting ganciclovir IC(50); however, establishing a pharmacokinetic/pharmacodynamic target for ganciclovir based on preclinical data is difficult because there are no studies combining dynamic drug exposure in relation to inhibition of viral replication. The data on ganciclovir TDM show large interindividual variability, indicating that TDM may play a role in modifying the dose to reduce toxicity and prevent treatment failure related to low concentrations. The main hurdle for implementing TDM is the lack of robust data to define a therapeutic window. CONCLUSIONS: Although the pharmacokinetics (PK) involved is relatively well-described, both the pharmacodynamics (PD) and pharmacokinetic/pharmacodynamic relationship are not. This is because the studies conducted to date have mainly focused on estimating ganciclovir exposure, and owing to the limited therapeutic options for CMV infections, future studies on ganciclovir are warranted

    Optimal Sampling Strategies for Therapeutic Drug Monitoring of First-Line Tuberculosis Drugs in Patients with Tuberculosis

    Get PDF
    BACKGROUND: The 24-h area under the concentration-time curve (AUC24)/minimal inhibitory concentration ratio is the best predictive pharmacokinetic/pharmacodynamic (PK/PD) parameter of the efficacy of first-line anti-tuberculosis (TB) drugs. An optimal sampling strategy (OSS) is useful for accurately estimating AUC24; however, OSS has not been developed in the fed state or in the early phase of treatment for first-line anti-TB drugs. METHODS: An OSS for the prediction of AUC24 of isoniazid, rifampicin, ethambutol and pyrazinamide was developed for TB patients starting treatment. A prospective, randomized, crossover trial was performed during the first 3 days of treatment in which first-line anti-TB drugs were administered either intravenously or in fasting or fed conditions. The PK data were used to develop OSS with best subset selection multiple linear regression. The OSS was internally validated using a jackknife analysis and externally validated with other patients from different ethnicities and in a steady state of treatment. RESULTS: OSS using time points of 2, 4 and 8 h post-dose performed best. Bias was < 5% and imprecision was < 15% for all drugs except ethambutol in the fed condition. External validation showed that OSS2-4-8 cannot be used for rifampicin in steady state conditions. CONCLUSION: OSS at 2, 4 and 8 h post-dose enabled an accurate and precise prediction of AUC24 values of first-line anti-TB drugs in this population. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02121314)

    How to design a study to evaluate therapeutic drug monitoring in infectious diseases?

    Get PDF
    Background: Therapeutic drug monitoring (TDM) is a tool to personalize and optimize dosing by measuring the drug concentration and subsequently adjusting the dose to reach a target concentration or exposure. The evidence to support TDM is however often ranked as expert opinion. Limitations in study design and sample size have hampered definitive conclusions of the potential added value of TDM. Objectives: We aim to give expert opinion and discuss the main points and limitations of available data from antibiotic TDM trials and emphasize key elements for consideration in design of future clinical studies to quantify the benefits of TDM. Sources: The sources were peer-reviewed publications, guidelines and expert opinions from the field of TDM. Content: This review focuses on key aspects of antimicrobial TDM study design: describing the rationale for a TDM study, assessing the exposure of a drug, assessing susceptibility of pathogens and selecting appropriate clinical endpoints. Moreover we provide guidance on appropriate study design. Implications: This is an overview of different aspects relevant for the conduct of a TDM study. We believe that this paper will help researchers and clinicians to design and conduct high-quality TDM studies

    Individualized treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring

    Get PDF
    AbstractObjective/BackgroundGlobally, approximately 50% of patients with multidrug-resistant tuberculosis (MDR-TB) experience treatment failure. MDR-TB treatment is hindered by adverse events, toxicity of the second-line anti-TB drugs, logistics and costs, especially in low-income countries, and problems with medication adherence. Pharmacokinetic variability is also attributed as one of the reasons contributing to treatment failure. In our reference Tuberculosis Center Beatrixoord (University Medical Center Groningen, Groningen, The Netherlands), we strive to individualize treatment of all MDR-TB patients based on drug-susceptibility testing using minimal inhibitory concentrations and pharmacokinetic parameters. The aim of this work is to give an overview of our efforts to individualize treatment of MDR-TB patients and to provide insights into practical tools that might be implemented in other clinical settings worldwide.MethodsWe critically looked at clinical practice guidelines implemented in our center to give an overview of practically applied tools to individualize treatment of MDR-TB patients. Furthermore, we selected studies carried out in our clinic on treatment individualization of MDR-TB patients and combined their results with recent studies in this area to suggest practical tools for implementation in other clinical settings.ResultsWe regularly perform therapeutic drug monitoring (TDM) of several second-line anti-TB drugs, such as amikacin, kanamycin, linezolid, and moxifloxacin. New analyses of Group D and experimental drugs, such as co-trimoxazole (sulfamethoxazole/trimethoprim), bedaquiline, delamanid, and clarithromycin, have been or are being developed. By implementing TDM methods, variability in pharmacokinetics is often detected and treatment is adjusted, possibly preventing toxicity in patients with very high drug exposure or treatment failure, or resistance in patients with very low drug exposure. Over the past 10years in the Netherlands, 86% of 104 patients had a successful outcome using a median of six active drugs. Many studies were performed using dried blood spot (DBS) analysis of second-line TB drugs. These studies may be used to implement TDM worldwide, even in low-income countries. Furthermore, several studies are performed to determine limited sampling strategies (LSSs). By limiting the number samples required for adequate sampling, TDM will become easier to implement. Other examples of LSSs included development of oral fluid sampling methods or development of semiquantitative thin-layer chromatography methods.ConclusionTDM is highly valuable to individualize and optimize treatment of complex MDR-TB patients. TDM is routinely applied in Tuberculosis Center Beatrixoord, and high success rates for treatment of MDR-TB patients have been achieved. DBS and LSS make implementation of TDM feasible, even in low- and middle-income countries

    Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections

    Get PDF
    Nontuberculous mycobacteria can cause minimally symptomatic self-limiting infections to progressive and life-threatening disease of multiple organs. Several factors such as increased testing and prevalence have made this an emerging infectious disease. Multiple guidelines have been published to guide therapy, which remains difficult owing to the complexity of therapy, the potential for acquired resistance, the toxicity of treatment, and a high treatment failure rate. Given the long duration of therapy, complex multi-drug treatment regimens, and the risk of drug toxicity, therapeutic drug monitoring is an excellent method to optimize treatment. However, currently, there is little available guidance on therapeutic drug monitoring for this condition. The aim of this review is to provide information on the pharmacokinetic/pharmacodynamic targets for individual drugs used in the treatment of nontuberculous mycobacteria disease. Lacking data from randomized controlled trials, in vitro, in vivo, and clinical data were aggregated to facilitate recommendations for therapeutic drug monitoring to improve efficacy and reduce toxicity

    Ganciclovir therapeutic drug monitoring in transplant recipients

    Get PDF
    BACKGROUND: The use of (val)ganciclovir is complicated by toxicity, slow response to treatment and acquired resistance. OBJECTIVES: To evaluate a routine therapeutic drug monitoring (TDM) programme for ganciclovir in a transplant patient population. METHODS: An observational study was performed in transplant recipients from June 2018 to February 2020. Dose adjustments were advised by the TDM pharmacist as part of clinical care. For prophylaxis, a trough concentration (Cmin) of 1-2 mg/L and an AUC24h of >50 mg·h/L were aimed for. For treatment, a Cmin of 2-4 mg/L and an AUC24h of 80-120 mg·h/L were aimed for. RESULTS: Ninety-five solid organ and stem cell transplant patients were enrolled. Overall, 450 serum concentrations were measured; with a median of 3 (IQR = 2-6) per patient. The median Cmin and AUC24h in the treatment and prophylaxis groups were 2.0 mg/L and 90 mg·h/L and 0.9 mg/L and 67 mg·h/L, respectively. Significant intra- and inter-patient patient variability was observed. The majority of patients with an estimated glomerular filtration rate of more than 120 mL/min/1.73 m2 and patients on continuous veno-venous haemofiltration showed underexposure. The highest Cmin and AUC24h values were associated with the increase in liver function markers and decline in WBC count as compared with baseline. CONCLUSIONS: This study revealed that a standard weight and kidney function-based dosing regimen resulted in highly variable ganciclovir Cmin and under- and over-exposure were observed in patients on dialysis and in patients with increased renal function. Clearly there is a need to explore the impact of concentration-guided dose adjustments in a prospective study
    corecore