33 research outputs found

    B cell ADAM10 Activity is Increased by Kainate Receptor Activation: Potential Role of this Pathway in Th2 Immunity and Cancer

    Get PDF
    CD23 has long been appreciated to be a natural, negative regulator of IgE synthesis. This understanding is due in part to animal models in which CD23 deficient or CD23 transgenic animals display exacerbated or reduced IgE levels respectively. Interestingly, CD23 is susceptible to proteolytic cleavage from the cell surface. When this occurs, CD23 loses its regulatory capability and the solubilized form can lead to pro-inflammatory events through its cytokinergic activity on macrophages. Thus, targeting this specific cleavage would be beneficial to the control of allergic disease by stabilizing CD23 at the cell surface. Inhibitor studies performed by our group as well as others indicate that the enzyme responsible for CD23 ectodomain shedding is a hydroxamate-sensitive metalloproteinase. Through collaboration with the Blobel group, we analyzed various ADAM KO mouse embryonic fibroblasts (MEFs) and found no involvement of ADAMs 8,9,12,15,17,19, and 33 in CD23 shedding, however we did find a role for ADAM10. Using ADAM10 KO MEFs and ADAM10 specific inhibitors, we discovered that ADAM10 is indeed the CD23 cleaving enzyme or “sheddase”. Thus, developing strategies that would target ADAM10 could have an effect on sCD23 release and IgE production. In the CNS, signaling through the kainate receptor (KAR) by glutamate causes an increase in ADAM10 expression. Human B cells were found to express a GluK2 containing kainate receptor and its activation increased ADAM10 expression which is in agreement with KAR activation in the CNS. Although glutamate is considered a neurotransmitter, it signals in the periphery and elevated levels are associated with certain immune disorders. A significant corresponding increase in sCD23 release is observed as well. Remarkably, this activation induced a strong increase in B cell proliferation, IgG, and IgE production and these events can be reversed through the use of NS102, a specific KAR antagonist. Thus, we report for the first time the unique presence on B cells of a neurotransmitter receptor and that activation of this receptor could serve as a novel mechanism for enhancing B cell activation and Ig production. This enhancement and control thereof has implications for allergic and autoimmune diseases. Lastly, the CD23-ADAM10 axis was examined in a non-allergic disease state, B cell chronic lymphocytic leukemia (BCLL). BCLL is characterized by a large accumulation of CD23+ cells and high levels of soluble CD23 in the sera. After further analysis, we show that ADAM10 is indeed over-expressed in BCLL and could account for the high levels seen in this patient population. Furthermore, specifically targeting ADAM10 resulted in reduced soluble CD23 release, reduced proliferation, and enhanced apoptosis induction. Taken together the novel finding that ADAM10 is involved in CD23 shedding allows for targeted therapeutic intervention of both atopic and non-atopic disease states

    Regulation of the IgE response

    Get PDF
    IgE was the last of the five immunoglobulin classes to be discovered and is the antibody that is responsible for much of human type I allergic disease. This review summarizes recent developments with respect to control of IgE synthesis with an emphasis on Th2 (T helper 2) control and regulation using IgE Fc receptors

    State of the Science: Salivary Biomarker Utilization for Stress Research

    Get PDF
    The use of salivary biomarkers for stress research is increasing based on the convenience of collection, affordability and scientific merit. This short review provides an overview of the state of the science of salivary biomarkers utilized in research related to stress. Methods: An integrative review was conducted. Results: The trend of utilizing salivary biomarkers in stress research was reviewed, specifically, focusing on the use of endocrine and inflammatory biomarkers incorporated in previous stress research. Then, a review of sampling procedures for salivary biomarkers and the analytic methods is provided. Finally, a discussion on the strengths and areas for improvement in the use of salivary biomarkers in stress research is included. Conclusion: Salivary biomarkers as an alternative to blood biomarkers are increasingly being recognized as a legitimate source for analyzing the stress response in humans

    Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fractalkine/CX<sub>3</sub>CL1 and its cognate receptor CX<sub>3</sub>CR1 are abundantly expressed in the CNS. Fractalkine is an unusual C-X3-C motif chemokine that is important in neuron-microglial communication, a co-receptor for HIV infection, and can be neuroprotective. To assess the effects of fractalkine on opiate-HIV interactive neurotoxicity, wild-type murine striatal neurons were co-cultured with mixed glia from the striata of wild-type or <it>Cx3cr1 </it>knockout mice ± HIV-1 Tat and/or morphine. Time-lapse digital images were continuously recorded at 20 min intervals for up to 72 h using computer-aided microscopy to track the same cells repeatedly.</p> <p>Results</p> <p>Co-exposure to Tat and morphine caused synergistic increases in neuron death, dendritic pruning, and microglial motility as previously reported. Exogenous fractalkine prevented synergistic Tat and morphine-induced dendritic losses and neuron death even though the inflammatory mediator TNF-α remained significantly elevated. Antibody blockade of CX<sub>3</sub>CR1 mimicked the toxic effects of morphine plus Tat, but did not add to their toxicity; while fractalkine failed to protect wild-type neurons co-cultured with <it>Cx<sub>3</sub>cr1</it><sup>-/-</sup>-null glia against morphine and Tat toxicity. Exogenous fractalkine also normalized microglial motility, which is elevated by Tat and morphine co-exposure, presumably limiting microglial surveillance that may lead to toxic effects on neurons. Fractalkine immunofluorescence was expressed in neurons and to a lesser extent by other cell types, whereas CX<sub>3</sub>CR1 immunoreactivity or GFP fluorescence in cells cultured from the striatum of <it>Cx3cr1</it><sup>-/- </sup>(<it>Cx3cr1</it><sup>GFP/GFP</sup>) mice were associated with microglia. Immunoblotting shows that fractalkine levels were unchanged following Tat and/or morphine exposure and there was no increase in released fractalkine as determined by ELISA. By contrast, CX<sub>3</sub>CR1 protein levels were markedly downregulated.</p> <p>Conclusions</p> <p>The results suggest that deficits in fractalkine-CX<sub>3</sub>CR1 signaling contribute to the synergistic neurotoxic effects of opioids and Tat. Importantly, exogenous fractalkine can selectively protect neurons from the injurious effects of chronic opioid-HIV-1 Tat co-exposure, and this suggests a potential therapeutic course for neuroAIDS. Although the cellular mechanisms underlying neuroprotection are not certain, findings that exogenous fractalkine reduces microglial motility and fails to protect neurons co-cultured with <it>Cx3cr1</it><sup>-/- </sup>mixed glia suggest that fractalkine may act by interfering with toxic microglial-neuron interactions.</p

    Recovery from COVID-19 and Acute Respiratory Distress Syndrome: The Potential Role of an Intensive Care Unit Recovery Clinic: A Case Report

    Get PDF
    Background In this case report, we describe the trajectory of recovery of a young, healthy patient diagnosed with coronavirus disease 2019 who developed acute respiratory distress syndrome. The purpose of this case report is to highlight the potential role of intensive care unit recovery or follow-up clinics for patients surviving acute hospitalization for coronavirus disease 2019. Case Presentation Our patient was a 27-year-old Caucasian woman with a past medical history of asthma transferred from a community hospital to our medical intensive care unit for acute hypoxic respiratory failure due to bilateral pneumonia requiring mechanical ventilation (ratio of arterial oxygen partial pressure to fraction of inspired oxygen, 180). On day 2 of her intensive care unit admission, reverse transcription–polymerase chain reaction confirmed coronavirus disease 2019. Her clinical status gradually improved, and she was extubated on intensive care unit day 5. She had a negative test result for coronavirus disease 2019 twice with repeated reverse transcription–polymerase chain reaction before being discharged to home after 10 days in the intensive care unit. Two weeks after intensive care unit discharge, the patient returned to our outpatient intensive care unit recovery clinic. At follow-up, the patient endorsed significant fatigue and exhaustion with difficulty walking, minor issues with sleep disruption, and periods of memory loss. She scored 10/12 on the short performance physical battery, indicating good physical function. She did not have signs of anxiety, depression, or post-traumatic stress disorder through self-report questionnaires. Clinically, she was considered at low risk of developing post–intensive care syndrome, but she required follow-up services to assist in navigating the healthcare system, addressing remaining symptoms, and promoting return to her pre–coronavirus disease 2019 societal role. Conclusion We present this case report to suggest that patients surviving coronavirus disease 2019 with subsequent development of acute respiratory distress syndrome will require more intense intensive care unit recovery follow-up. Patients with a higher degree of acute illness who also have pre-existing comorbidities and those of older age who survive mechanical ventilation for coronavirus disease 2019 will require substantial post–intensive care unit care to mitigate and treat post–intensive care syndrome, promote reintegration into the community, and improve quality of life

    The effect of the oil resin on the properties of solution of the petroleum wax treated in an ultrasonic field

    Get PDF
    It was found that the complex treatment of ultrasonic followed by the addition of 0.3% by weight. petroleum resins, a more efficient method of inhibiting sedimentation processes than just ultrasonic or addition of 0,3% by weight. petroleum resins. According to the obtained data, fragments of aliphatic petroleum resins are adsorbed on the high molecular hydrocarbons of normal structure and prevent their aggregation thus the inhibition of sedimentation occurs

    PAI-1 as a critical factor in the resolution of sepsis and acute kidney injury in old age

    Get PDF
    Elevated plasma levels of plasminogen activator inhibitor type 1 (PAI-1) are documented in patients with sepsis and levels positively correlate with disease severity and mortality. Our prior work demonstrated that PAI-1 in plasma is positively associated with acute kidney injury (AKI) in septic patients and mice. The objective of this study was to determine if PAI-1 is causally related to AKI and worse sepsis outcomes using a clinically-relevant and age-appropriate murine model of sepsis. Sepsis was induced by cecal slurry (CS)-injection to wild-type (WT, C57BL/6) and PAI-1 knockout (KO) mice at young (5–9 months) and old (18–22 months) age. Survival was monitored for at least 10 days or mice were euthanized for tissue collection at 24 or 48 h post-insult. Contrary to our expectation, PAI-1 KO mice at old age were significantly more sensitive to CS-induced sepsis compared to WT mice (24% vs. 65% survival, p = 0.0037). In comparison, loss of PAI-1 at young age had negligible effects on sepsis survival (86% vs. 88% survival, p = 0.8106) highlighting the importance of age as a biological variable. Injury to the kidney was the most apparent pathological consequence and occurred earlier in aged PAI-1 KO mice. Coagulation markers were unaffected by loss of PAI-1, suggesting thrombosis-independent mechanisms for PAI-1-mediated protection. In summary, although high PAI-1 levels are clinically associated with worse sepsis outcomes, loss of PAI-1 rendered mice more susceptible to kidney injury and death in a CS-induced model of sepsis using aged mice. These results implicate PAI-1 as a critical factor in the resolution of sepsis in old age

    Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma

    Get PDF
    Background Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. Objective We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. Methods Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. Results Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. Conclusion Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease

    Unique Cytokine Signature in the Plasma of Patients with Fibromyalgia

    Get PDF
    Fibromyalgia (FMS) is a chronic pain syndrome with a complex but poorly understood pathogenesis affecting approximately 10 million adults in the United States. The lack of a clear etiology of FMS has limited the effective diagnosis and treatment of this debilitating condition. The objective of this secondary data analysis was to examine plasma cytokine levels in women with FMS using the Bio-Plex Human Cytokine 17-plex Assay. Post hoc analysis of plasma cytokine levels was performed to evaluate patterns that were not specified a priori. Upon examination, patients with FMS exhibited a marked reduction in TH2 cytokines such as IL-4, IL-5, and IL-13. The finding of this pattern of altered cytokine milieu not only supports the role of inflammation in FMS but also may lead to more definitive diagnostic tools for clinicians treating FMS. The TH2 suppression provides strong evidence of immune dysregulation in patients with FMS
    corecore