466 research outputs found

    Electronic structure and Jahn-Teller effect in GaN:Mn and ZnS:Cr

    Full text link
    We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and strong electron correlation in the 3d shell may lead to the correct insulating electronic structure. Using the LSDA+U approach we obtain the Jahn-Teller energy gain in reasonable agreement with the available experimental data. The ab-initio results are completed by a more phenomenological ligand field theory.Comment: 15 pages, 5 figure

    Cooperative Jahn-Teller Effect and Electron-Phonon Coupling in La1−xAxMnO3La_{1-x}A_xMnO_3

    Full text link
    A classical model for the lattice distortions of \lax is derived and, in a mean field approximation, solved. The model is based on previous work by Kanamori and involves localized Mn d-electrons (which induce tetragonal distortions of the oxygen octahedra surrounding the Mn) and localized holes (which induce breathing distortions). Parameters are determined by fitting to the room temperature structure of LaMnO3LaMnO_3. The energy gained by formation of a local lattice distortion is found to be large, most likely ≈0.6\approx 0.6 eV per site, implying a strong electorn-phonon coupling and supporting polaronic models of transport in the doped materials. The structural transition is shown to be of the order-disorder type; the rapid x-dependence of the transition temperature is argued to occur because added holes produce a "random" field which misaligns the nearby sites.Comment: 24 pages. No figures. One Table. Late

    How to study basement membrane stiffness as a biophysical trigger in prostate cancer and other age-related pathologies or metabolic diseases

    Get PDF
    Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by ((sodium dodecyl sulfate polyacrylamide gel electrophoresis)) (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under the same conditions. Cell signaling pathways and the subcellular localization of proteins can also be assessed

    Crystal Distortion and the Two-Channel Kondo Effect

    Full text link
    We study a simple model of the two-channel Kondo effect in a distorted crystal. This model is then used to investigate the interplay of the Kondo and Jahn-Teller effects, and also the Kondo effect in an impure crystal. We find that the Jahn-Teller interaction modifies the characteristic energy scale of the system below which non-Fermi-liquid properties of the model become apparent. The modified energy scale tends to zero as the limit of a purely static Jahn-Teller effect is approached. We find also that the non-Fermi-liquid properties of the quadrupolar Kondo effect are not stable against crystal distortion caused by impurities.Comment: 11 page

    The null energy condition and instability

    Get PDF
    We extend previous work showing that violation of the null energy condition implies instability in a broad class of models, including gauge theories with scalar and fermionic matter as well as any perfect fluid. Simple examples are given to illustrate these results. The role of causality in our results is discussed. Finally, we extend the fluid results to more general systems in thermal equilibrium. When applied to the dark energy, our results imply that w is unlikely to be less than -1.Comment: 11 pages, 5 figures, Revte

    A 18F radiolabelled Zn(ii) sensing fluorescent probe

    Get PDF
    A selective fluorescent probe for Zn(ii), AQA-F, has been synthesized. AQA-F exhibits a ratiometric shift in emission of up to 80 nm upon binding Zn(ii) ([AQA-F] = 0.1 mM, [Zn(ii)Cl 2 ] = 0-300 μM). An enhancement of quantum yield from Φ = 4.2% to Φ = 35% is also observed. AQA-F has a binding constant, K d = 15.2 μM with Zn(ii). This probe has been shown to respond to endogenous Zn(ii) levels in vitro in prostate and prostate cancer cell lines. [ 18 F]AQA-F has been synthesized with a radiochemical yield of 8.6% and a radiochemical purity of 97% in 88 minutes. AQA-F shows the potential for a dual modal PET/fluorescence imaging probe for Zn(ii)

    A hybrid actuator disc - full rotor CFD methodology for modelling the effects of wind turbine wake interactions on performance

    Get PDF
    The performance of individual wind turbines is crucial for maximum energy yield, however, their performance is often reduced when turbines are placed together in an array. The wake produced by the rotors interacts with downstream turbines, resulting in a reduction in power output. In this paper, we demonstrate a new and faster modelling technique which combines actuator disc theory, modelled using wind tunnel validated Computational Fluid Dynamics (CFD), and integrated into full rotor CFD simulations. This novel hybrid of techniques results in the ability to analyse performance when simulating various array layouts more rapidly and accurately than using either method on its own. It is shown that there is a significant power reduction from a downstream turbine that is subjected to the wake of an upstream turbine, and that this is due to both a reduction in power in the wind and also due to changes in the aerodynamics. Analysis of static pressure along the blade showed that as a result of wake interactions, a large reduction in the suction peak along the leading edge reduced the lift generated by the rotor and so reduced the torque production and the ability for the blade to extract energy from the wind

    Ultrahigh Bandwidth Spin Noise Spectroscopy: Detection of Large g-Factor Fluctuations in Highly n-Doped GaAs

    Get PDF
    We advance all optical spin noise spectroscopy (SNS) in semiconductors to detection bandwidths of several hundred gigahertz by employing an ingenious scheme of pulse trains from ultrafast laser oscillators as an optical probe. The ultrafast SNS technique avoids the need for optical pumping and enables nearly perturbation free measurements of extremely short spin dephasing times. We employ the technique to highly n-doped bulk GaAs where magnetic field dependent measurements show unexpected large g-factor fluctuations. Calculations suggest that such large g-factor fluctuations do not necessarily result from extrinsic sample variations but are intrinsically present in every doped semiconductor due to the stochastic nature of the dopant distribution.Comment: 5 pages, 3 figure

    The toxic effect of cytostatics on primary cilia frequency and multiciliation

    Get PDF
    The primary cilium is considered as a key component of morphological cellular stability. However, cancer cells are notorious for lacking primary cilia in most cases, depending upon the tumour type. Previous reports have shown the effect of starvation and cytostatics on ciliogenesis in normal and cancer cells although with limited success, especially when concerning the latter. In this study we evaluated the presence and frequency of primary cilia in breast fibroblasts and in triple negative breast cancer cells after treatment with cytostatics finding that, in the case of breast fibroblasts, primary cilia were detected at their highest incidence 72 hours after treatment with 120 nM doxorubicin. Further, multiciliated cells were also detected after treatment with 80 nM doxorubicin. On the other hand, treatment with taxol increased the number of ciliated cells only at low concentrations (1.25 and 3.25 nM) and did not induce multiciliation. Interestingly, triple negative breast cancer cells did not present primary cilia after treatment with either doxorubicin or taxol. This is the first study reporting presence of multiple primary cilia in breast fibroblasts induced by Doxorubicin. However, the null effect of these cytostatics on primary cilia incidence in the evaluated TNBC cell lines requires further research
    • …
    corecore