3 research outputs found

    Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency

    Get PDF
    BACKGROUND. The histone deacetylase (HDAC) inhibitor vorinostat (VOR) can increase HIV RNA expression in vivo within resting CD4+ T cells of aviremic HIV+ individuals. However, while studies of VOR or other HDAC inhibitors have reported reversal of latency, none has demonstrated clearance of latent infection. We sought to identify the optimal dosing of VOR for effective serial reversal of HIV latency

    A multiple-site-specific heteroduplex tracking assay as a tool for the study of viral population dynamics

    Get PDF
    Rapidly evolving entities, such as viruses, can undergo complex genetic changes in the face of strong selective pressure. We have developed a modified heteroduplex tracking assay (HTA) capable of detecting the presence of single, specific mutations or sets of linked mutations. The initial application of this approach, termed multiple-site-specific (MSS) HTA, was directed toward the detection of mutations in the HIV-1 pro gene at positions 46, 48, 54, 82, 84, and 90, which are associated with resistance to multiple protease inhibitors. We demonstrate that MSS HTA is sensitive and largely specific to all targeted mutations. The assay allows the accurate and reproducible quantitation of viral subpopulations comprising 3% or more of the total population. Furthermore, we used MSS HTA in longitudinal studies of pro gene evolution in vitro and in vivo. In the examples shown here, populations turned over rapidly and more than one population was present frequently. To demonstrate the versatility of MSS HTA, we also constructed a probe sensitive to changes at positions 181 and 184 of the RT coding domain. Changes at these positions are involved in resistance to nevirapine and 2′,3′-dideoxy-3′-thiacytidine (3TC), respectively. This assay easily detected the evolution of resistance to 3TC. MSS HTA provides a rapid and sensitive approach for detecting the presence of and quantifying complex mixtures of distinct genotypes, including genetically linked mutations, and, as one example, represents a useful tool for following the evolution of drug resistance during failure of HIV-1 antiviral therapy

    Impact of Biological Sex on Immune Activation and Frequency of the Latent HIV Reservoir During Suppressive Antiretroviral Therapy.

    No full text
    BackgroundPersistent HIV infection of long-lived resting CD4 T cells, despite antiretroviral therapy (ART), remains a barrier to HIV cure. Women have a more robust type 1 interferon response during HIV infection relative to men, contributing to lower initial plasma viremia. As lower viremia during acute infection is associated with reduced frequency of latent HIV infection, we hypothesized that women on ART would have a lower frequency of latent HIV compared to men.MethodsART-suppressed, HIV seropositive women (n = 22) were matched 1:1 to 22 of 39 ART-suppressed men. We also compared the 22 women to all 39 men, adjusting for age and race as covariates. We measured the frequency of latent HIV using the quantitative viral outgrowth assay, the intact proviral DNA assay, and total HIV gag DNA. We also performed activation/exhaustion immunophenotyping on peripheral blood mononuclear cells and quantified interferon-stimulated gene (ISG) expression in CD4 T cells.ResultsWe did not observe evident sex differences in the frequency of persistent HIV in resting CD4 T cells. Immunophenotyping and CD4 T-cell ISG expression analysis revealed marginal differences across the sexes.ConclusionsDifferences in HIV reservoir frequency and immune activation appear to be small across sexes during long-term suppressive therapy
    corecore