155 research outputs found

    Android Protection System: A Signed Code Security Mechanism for Smartphone Applications

    Get PDF
    This research develops the Android Protection System (APS), a hardware-implemented application security mechanism on Android smartphones. APS uses a hash-based white-list approach to protect mobile devices from unapproved application execution. Functional testing confirms this implementation allows approved content to execute on the mobile device while blocking unapproved content. Performance benchmarking shows system overhead during application installation increases linearly as the application package size increases. APS presents no noticeable performance degradation during application execution. The security mechanism degrades system performance only during application installation, when users expect delay. APS is implemented within the default Android application installation process. Applications are hashed prior to installation and compared against a white-list of approved content. APS allows applications that generate a matching hash; all others are blocked. APS blocks 100% of unapproved content while allowing 100% of approved content. Performance overhead for APS varies from 100.5% to 112.5% with respect to the default Android application installation process. This research directly supports the efforts of the USAF and the DoD to protect our information and ensure that adversaries do not gain access to our systems

    Timing of successful settlement : demonstration of a recruitment window in the barnacle Semibalanus balanoides

    Get PDF
    Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 320 (2006): 233-237, doi:10.3354/meps320233.Recruitment is a key factor in benthic population dynamics, and spatial and temporal processes that affect settlement may determine recruitment; however, temporal processes are not well understood. We tested whether the date that recruits settle is a random sample within the settlement season by measuring daily settlement of the barnacle Semibalanus balanoides throughout the entire settlement season. A total of 2721 barnacle larvae settled during 89 d on 12 quadrats. Individual settlers were tracked to reproductive age (11 mo after settlement); only 8 survived to reproduction. Survivors settled within a narrow 21 d recruitment window, a period shorter than expected by chance. The concept of a recruitment window has broad implications in studying benthic recruitment and population dynamics. Focus on the recruitment window when it is narrow could simplify the study of recruitment, since fewer factors would have to be considered.This work was supported by the US NSF (OCE-9986627 and OCE- 0083976)

    Copulation patterns in captive hamadryas baboons: a quantitative analysis

    Get PDF
    For primates, as for many other vertebrates, copulation which results in ejaculation is a prerequisite for reproduction. The probability of ejaculation is affected by various physiological and social factors, for example reproductive state of male and female and operational sex-ratio. In this paper, we present quantitative and qualitative data on patterns of sexual behaviour in a captive group of hamadryas baboons (Papio hamadryas), a species with a polygynous–monandric mating system. We observed more than 700 copulations and analysed factors that can affect the probability of ejaculation. Multilevel logistic regression analysis and Akaike’s information criterion (AIC) model selection procedures revealed that the probability of successful copulation increased as the size of female sexual swellings increased, indicating increased probability of ovulation, and as the number of females per one-male unit (OMU) decreased. In contrast, occurrence of female copulation calls, sex of the copulation initiator, and previous male aggression toward females did not affect the probability of ejaculation. Synchrony of oestrus cycles also had no effect (most likely because the sample size was too small). We also observed 29 extra-group copulations by two non-adult males. Our results indicate that male hamadryas baboons copulated more successfully around the time of ovulation and that males in large OMUs with many females may be confronted by time or energy-allocation problems

    Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes

    Get PDF
    A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells. Although the potential role of p53 in the transformation process was identified, the underlying mechanisms of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified, which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated immune responses were among the major changes of biological function. Our findings shed light on potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential

    Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells

    Get PDF
    Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT

    Mathematics as Poesis: A preliminary project report

    Get PDF
    This paper talks about the various viewpoints of mathematics, beginning with classical perspectives and ending with the idea of poesis, or the theology of math as the art of making

    Direct Stimulation Of Human Fibroblasts By nCeO2 In Vitro Is Attenuated With An Amorphous Silica Coating

    Get PDF
    Background: Nano-scaled cerium oxide (nCeO2) is used in a variety of applications, including use as a fuel additive, catalyst, and polishing agent, yet potential adverse health effects associated with nCeO2 exposure remain incompletely understood. Given the increasing utility and demand for engineered nanomaterials (ENMs) such as nCeO2, “safety-bydesign” approaches are currently being sought, meaning that the physicochemical properties (e.g., size and surface chemistry) of the ENMs are altered in an effort to maximize functionality while minimizing potential toxicity. In vivo studies have shown in a rat model that inhaled nCeO2 deposited deep in the lung and induced fibrosis. However, little is known about how the physicochemical properties of nCeO2, or the coating of the particles with a material such as amorphous silica (aSiO2), may affect the bio-activity of these particles. Thus, we hypothesized that the physicochemical properties of nCeO2 may explain its potential to induce fibrogenesis, and that a nano-thin aSiO2 coating on nCeO2 may counteract that effect. Results: Primary normal human lung fibroblasts were treated at occupationally relevant doses with nCeO2 that was either left uncoated or was coated with aSiO2 (amsCeO2). Subsequently, fibroblasts were analyzed for known hallmarks of fibrogenesis, including cell proliferation and collagen production, as well as the formation of fibroblastic nodules. The results of this study are consistent with this hypothesis, as we found that nCeO2 directly induced significant production of collagen I and increased cell proliferation in vitro, while amsCeO2 did not. Furthermore, treatment of fibroblasts with nCeO2, but not amsCeO2, significantly induced the formation of fibroblastic nodules, a clear indicator of fibrogenicity. Such in vitro data is consistent with recent in vivo observations using the same nCeO2 nanoparticles and relevant doses. This effect appeared to be mediated through TGFÎČ signaling since chemical inhibition of the TGFÎČ receptor abolished these responses. Conclusions: These results indicate that differences in the physicochemical properties of nCeO2 may alter the fibrogenicity of this material, thus highlighting the potential benefits of “safety-by-design” strategies. In addition, this study provides an efficient in vitro method for testing the fibrogenicity of ENMs that strongly correlates with in vivo finding

    Incineration of Nanoclay Composites Leads to Byproducts with Reduced Cellular Reactivity

    Get PDF
    Addition of nanoclays into a polymer matrix leads to nanocomposites with enhanced properties to be used in plastics for food packaging applications. Because of the plastics’ high stored energy value, such nanocomposites make good candidates for disposal via municipal solid waste plants. However, upon disposal, increased concerns related to nanocomposites’ byproducts potential toxicity arise, especially considering that such byproducts could escape disposal filters to cause inhalation hazards. Herein, we investigated the effects that byproducts of a polymer polylactic acid-based nanocomposite containing a functionalized montmorillonite nanoclay (Cloisite 30B) could pose to human lung epithelial cells, used as a model for inhalation exposure. Analysis showed that the byproducts induced toxic responses, including reductions in cellular viability, changes in cellular morphology, and cytoskeletal alterations, however only at high doses of exposure. The degree of dispersion of nanoclays in the polymer matrixappeared to influence the material characteristics, degradation, and ultimately toxicity. With toxicity of the byproduct occurring at high doses, safety protocols should be considered, along with deleterious effects investigations to thus help aid in safer, yet still effective products and disposal strategies
    • 

    corecore