24 research outputs found

    Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial

    Get PDF
    Neurofeedback (NF) could help to improve attentional and self-management capabilities in children with attention-deficit/hyperactivity disorder (ADHD). In a randomised controlled trial, NF training was found to be superior to a computerised attention skills training (AST) (Gevensleben et al. in J Child Psychol Psychiatry 50(7):780–789, 2009). In the present paper, treatment effects at 6-month follow-up were studied. 94 children with ADHD, aged 8–12 years, completed either 36 sessions of NF training (n = 59) or a computerised AST (n = 35). Pre-training, post-training and follow-up assessment encompassed several behaviour rating scales (e.g., the German ADHD rating scale, FBB-HKS) completed by parents. Follow-up information was analysed in 61 children (ca. 65%) on a per-protocol basis. 17 children (of 33 dropouts) had started a medication after the end of the training or early in the follow-up period. Improvements in the NF group (n = 38) at follow-up were superior to those of the control group (n = 23) and comparable to the effects at the end of the training. For the FBB-HKS total score (primary outcome measure), a medium effect size of 0.71 was obtained at follow-up. A reduction of at least 25% in the primary outcome measure (responder criterion) was observed in 50% of the children in the NF group. In conclusion, behavioural improvements induced by NF training in children with ADHD were maintained at a 6-month follow-up. Though treatment effects appear to be limited, the results confirm the notion that NF is a clinically efficacious module in the treatment of children with ADHD

    Transport of volatile chlorinated hydrocarbons in unsaturated aggregated media

    No full text
    Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants

    Temporal Differentiation of Resource Capture and Biomass Accumulation as a Driver of Yield Increase in Intercropping

    No full text
    Intercropping, i.e., the simultaneous cultivation of different crops on the same field, has demonstrated yield advantages compared to monoculture cropping. These yield advantages have often been attributed to complementary resource use, but few studies quantified the temporal complementarity of nutrient acquisition and biomass production. Our understanding of how nutrient uptake rates of nitrogen (N) and phosphorous (P) and biomass accumulation change throughout the growing season and between different neighbors is limited. We conducted weekly destructive harvests to measure temporal trajectories of N and P uptake and biomass production in three crop species (oat, lupin, and camelina) growing either as isolated single plants, in monocultures or as intercrops. Additionally, we quantified organic acid exudation in the rhizosphere and biological N2-fixation of lupin throughout the growing season. Logistic models were fitted to characterize nutrient acquisition and biomass accumulation trajectories. Nutrient uptake and biomass accumulation trajectories were curtailed by competitive interactions, resulting in earlier peak rates and lower total accumulated nutrients and biomass compared to cultivation as isolated single plants. Different pathways led to overyielding in the two mixtures. The oat–camelina mixture was characterized by a shift from belowground temporal niche partitioning of resource uptake to aboveground competition for light during the growing season. The oat–lupin mixture showed strong competitive interactions, where lupin eventually overyielded due to reliance on atmospheric N and stronger competitiveness for soil P compared to oat. Synthesis: This study demonstrates temporal shifts to earlier peak rates of plants growing with neighbors compared to those growing alone, with changes in uptake patterns suggesting that observed temporal shifts in our experiment were driven by competitive interactions rather than active plant behavior to reduce competition. The two differing pathways to overyielding in the two mixtures highlight the importance of examining temporal dynamics in intercropping systems to understand the underlying mechanisms of overyielding.ISSN:1664-462

    Antimony mobility during prolonged waterlogging and reoxidation of shooting range soil : a field experiment

    No full text
    Due to its increasing anthropogenic use, antimony (Sb) soil pollution is of growing concern. Many soils experience fluctuating hydrological conditions, yet very little is known about how this affects the mobility of this toxic element under field conditions. In this study, we performed an outdoor lysimeter experiment to compare Sb leaching from a calcareous shooting range soil under drained and prolonged waterlogged conditions (1.5-2.75 years), followed by a 1.5-year period of soil reoxidation. Waterlogging reduced Sb leachate concentrations significantly compared to drained conditions and soil solution concentrations decreased with depth due to the increased reducing conditions. This was attributed to the reduction of Sb(V) to Sb(III) and the more effective sorption of the latter to metal (hydr)oxides. However, reductive dissolution of iron (hydr)oxides released Sb into solution, although Sb concentrations never exceeded those in the drained lysimeters. On reoxidation of the soil, Sb was remobilized, but even after 1.5years under reoxidised conditions, Sb leachate and soil solution concentrations still remained below those of the drained lysimeters. Our results demonstrate that prolonged waterlogging may have an irreversible effect on Sb leachate and soil solution concentrations

    Green Toxicology: a strategy for sustainable chemical and material development

    Get PDF
    Abstract Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of “Green Chemistry” and “Green Engineering”, “Green Toxicology” aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed

    Human stem cell models of neurodegeneration: from basic science of amyotrophic lateral sclerosis to clinical translation

    No full text
    Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS
    corecore