213 research outputs found

    EXAFS study of nickel exchanged into zeolite Y

    Get PDF
    EXAFS and near edge spectroscopy were used to monitor changes i n Ni coordination as a function of treatment conditions after aqueous exchange into zeolite Y. Our results suggest that after calcination and dehydration under the conditions of this study, major site occupancy for Ni appears to be in the tri-coordinate exchange sites , and not i n the hexagonal prisms as suggested by previous x-ray diffraction results

    EXAFS study of nickel tetracarbonyl and nickel clusters in zeolite Y

    Get PDF
    Adsorption and thermal decomposition of Ni(CO)4 in the cage system of zeolite Y have been studied with EXAFS, electron microscopy and IR spectroscopy , Ni(CO)4 is adsorbed as an intact molecule in both cation - free zeolite Y and NaY. Symmetry changes of the molecule in NaY are assigned to the formation of Na—OC-IMi bridges. Thermal treatment of the Ni(CO)4/NaY adduct leads to loss of CO concomitant with the formation of a binodal Ni phase. A major part of the forms clusters with diameter between 0.5 and about 1.5 nm, in addition to larger crystallites (5-30 nm), sticking at the outer surface of the zeolite matrix., The Ni-Ni scattering amplitude indicates increasing average particle size with increasing temperature

    EXAFS Analysis of Size-Constrained Semiconducting Materials

    Get PDF
    Semiconducting materials such as CdSe, CdS, PbS and GaP are included in crystalline zeolite Y and mordenite and structurally flexible ethylene-methacrylic acid copolymer solid matrices. EXAFS analysis reveals formation of species with dimensions of molecular size up to ca. 13 A in the crystalline hosts, while the polymer matrices allow agglomeration of larger semiconducting particles. Zeolite anchored structures are distinctively different to small particles with bulk crystal structure as usually found in colloidal systems

    Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7

    Full text link
    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K as seen both in susceptibility and specific heat, and there is a corresponding change in the electrical resistivity behaviour. A second antiferromagnetic ordering transition seen below 10 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+ ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.Comment: 19 pages, 10 figure
    corecore