72 research outputs found

    Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TRPA1 has been implicated in both chemo- and mechanosensation. Recent work demonstrates that inhibiting TRPA1 function reduces mechanical hypersensitivity produced by inflammation. Furthermore, a broad range of chemical irritants require functional TRPA1 to exert their effects. In this study we use the <it>ex-vivo </it>skin-nerve preparation to directly determine the contribution of TRPA1 to mechanical- and chemical-evoked responses at the level of the primary afferent terminal.</p> <p>Results</p> <p>Acute application of HC-030031, a selective TRPA1 antagonist, inhibited all formalin responses in rat C fibers but had no effect on TRPV1 function, assessed by capsaicin responsiveness. Genetic ablation experiments corroborated the pharmacological findings as C fibers from wild type mice responded to both formalin and capsaicin, but fibers from their TRPA1-deficient littermates responded only to capsaicin. HC-030031 markedly reduced the mechanically-evoked action potential firing in rat and wild type mouse C fibers, particularly at high-intensity forces, but had no effect on the mechanical responsiveness of AĪ“ fiber nociceptors. Furthermore, HC-030031 had no effect on mechanically-evoked firing in C fibers from TRPA1-deficient mice, indicating that HC-030031 inhibits mechanically-evoked firing via a TRPA1-dependent mechanism.</p> <p>Conclusion</p> <p>Our data show that acute pharmacological blockade of TRPA1 at the cutaneous receptive field inhibits formalin-evoked activation and markedly reduces mechanically-evoked action potential firing in C fibers. Thus, functional TRPA1 at sensory afferent terminals in skin is required for their responsiveness to both noxious chemical and mechanical stimuli.</p

    CaMKII Controls Whether Touch Is Painful

    Get PDF
    The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (AĪ²-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of AĪ²-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in AĪ²-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic AĪ²-LTMRs removes dorsal horn inhibition that otherwise prevents AĪ²-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in AĪ²-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation

    Prostaglandin metabolite induces inhibition of TRPA1 and channel-dependent nociception

    Get PDF
    BACKGROUND: The Transient Receptor Potential (TRP) ion channel TRPA1 is a key player in pain pathways. Irritant chemicals activate ion channel TRPA1 via covalent modification of N-terminal cysteines. We and others have shown that 15-Deoxy-Ī”12, 14-prostaglandin J(2) (15d-PGJ(2)) similarly activates TRPA1 and causes channel-dependent nociception. Paradoxically, 15d-PGJ(2) can also be anti-nociceptive in several pain models. Here we hypothesized that activation and subsequent desensitization of TRPA1 in dorsal root ganglion (DRG) neurons underlies the anti-nociceptive property of 15d-PGJ(2). To investigate this, we utilized a battery of behavioral assays and intracellular Ca(2+) imaging in DRG neurons to test if pre-treatment with 15d-PGJ(2) inhibited TRPA1 to subsequent stimulation. RESULTS: Intraplantar pre-injection of 15d-PGJ(2), in contrast to mustard oil (AITC), attenuated acute nocifensive responses to subsequent injections of 15d-PGJ(2) and AITC, but not capsaicin (CAP). Intraplantar 15d-PGJ(2)ā€”administered after the induction of inflammationā€”reduced mechanical hypersensitivity in the Complete Freundā€™s Adjuvant (CFA) model for up to 2ā€‰h post-injection. The 15d-PGJ(2)-mediated reduction in mechanical hypersensitivity is dependent on TRPA1, as this effect was absent in TRPA1 knockout mice. Ca(2+) imaging studies of DRG neurons demonstrated that 15d-PGJ(2) pre-exposure reduced the magnitude and number of neuronal responses to AITC, but not CAP. AITC responses were not reduced when neurons were pre-exposed to 15d-PGJ(2) combined with HC-030031 (TRPA1 antagonist), demonstrating that inhibitory effects of 15d-PGJ(2) depend on TRPA1 activation. Single daily doses of 15d-PGJ(2), administered during the course of 4ā€‰days in the CFA model, effectively reversed mechanical hypersensitivity without apparent tolerance or toxicity. CONCLUSIONS: Taken together, our data support the hypothesis that 15d-PGJ(2) induces activation followed by persistent inhibition of TRPA1 channels in DRG sensory neurons in vitro and in vivo. Moreover, we demonstrate novel evidence that 15d-PGJ(2) is analgesic in mouse models of pain via a TRPA1-dependent mechanism. Collectively, our studies support that TRPA1 agonists may be useful as pain therapeutics

    TRPA1 Mediates Mechanical Currents in the Plasma Membrane of Mouse Sensory Neurons

    Get PDF
    Mechanosensitive channels serve as essential sensors for cells to interact with their environment. The identity of mechanosensitive channels that underlie somatosensory touch transduction is still a mystery. One promising mechanotransduction candidate is the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel. To determine the role of TRPA1 in the generation of mechanically-sensitive currents, we used dorsal root ganglion (DRG) neuron cultures from adult mice and applied rapid focal mechanical stimulation (indentation) to the soma membrane. Small neurons (diameter <27 Āµm) were studied because TRPA1 is functionally present in these neurons which largely give rise to C-fiber afferents in vivo. Small neurons were classified by isolectin B4 binding

    Mechanisms of pain

    No full text
    Persistent or chronic pain is the primary reason people seek medical care, yet current therapies are either inadequate for certain types of pain or cause intolerable side effects. Recently, pain neurobiologists have identified a number of cellular and molecular processes that lead to the initiation and maintenance of pain. Understanding these underlying mechanisms has given significant promise for the development of more effective, more specific pain therapies in the near future

    GFR Ī±

    No full text
    The GFR Ī±2 receptor is the cognate co-receptor for the neurotrophic factor neurturin and GFR Ī±2 is selectively expressed by isolectin B(4) (IB(4))-binding nociceptive sensory neurons. Here, we used two physiological approaches in combination with mice that have a targeted deletion of the GFR Ī±2 gene (GFR Ī±2 āˆ’/āˆ’ mice) in order to determine whether GFR Ī±2/neurturin signalling regulates the functional properties or the survival of IB(4)-binding nociceptors. Because 50 % of IB(4)-binding neurons respond to noxious heat and because patch clamp recordings of isolated dorsal root ganglion sensory neurons allow one to neurochemically identify subpopulations of neurons, we analysed the noxious heat responsiveness of IB(4)-positive and -negative small-diameter neurons isolated from adult GFR Ī±2 āˆ’/āˆ’ and littermate control mice. The percentage of IB(4)-positive neurons that had large (> 100 pA) heat-evoked inward currents was severely reduced in GFR Ī±2 āˆ’/āˆ’ mice (12 %) compared to wild-type littermates (47 %), and this loss in large-magnitude heat currents was accounted for by an increase in neurons with very small (< 100 pA) heat-evoked currents as well as an increase in neurons with no detectable heat current. Counts of IB(4)-positive and -negative neurons, as well as counts of unmyelinated axons in the saphenous nerve, confirmed that the loss in neurons with large-amplitude heat currents was due to a deficit in heat transduction and not a decrease in cell survival. The effect was modality specific for heat because mechanical transduction of all fibre types, including IB(4)-positive C fibres, was normal. Our data are the first to indicate a transduction-function role for GFR Ī±2/neurturin signalling in a specific class of sensory neurons

    TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons.

    Get PDF
    Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J) DRG neurons. Approximately 80% of all small-diameter (<27 Āµm) neurons from lumbar 1-6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79%) or cinnamaldehyde (84%) were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81%) cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPĪ± promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66%) of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2-4%) responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (ā‰„27 Āµm diameter) responded to AITC (6%) or cinnamaldehyde (4%), confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is functionally expressed primarily in the IB4-positive, CGRP-negative subpopulation of small lumbar DRG neurons from rodents. Thus, IB4 binding is a better indicator than neuropeptides for TRPA1 expression

    Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors

    No full text
    Abstract Background Sickle cell disease (SCD) is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs) have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans. Findings Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin). HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch ā€œpuffedā€ cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA) AĪ² and AĪ“ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA) AĪ² afferents had a 25% increase in suprathreshold firing compared to HbAA controls. Conclusions These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that AĪ² fibers can be sensitized to mechanical force and should potentially be examined for sensitization in other tissue injury and disease models.</p
    • ā€¦
    corecore