15 research outputs found

    Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice

    Get PDF
    Background Sirtuins are important regulators of glucose and fat metabolism, and sirtuin activation has been proposed as a therapeutic target for insulin resistance and diabetes. We have shown leucine to increase mitochondrial biogenesis and fat oxidation via Sirt1 dependent pathways. Resveratrol is a widely recognized activator of Sirt; however, the biologically-effective high concentrations used in cell and animal studies are generally impractical or difficult to achieve in humans. Accordingly, we sought to determine whether leucine would exhibit synergy with low levels of resveratrol on sirtuin-dependent outcomes in adipocytes and in diet-induced obese (DIO) mice. Methods 3T3-L1 mouse adipocytes were treated with Leucine (0.5 mM), β-hydroxy-β-methyl butyrate (HMB) (5 μM) or Resveratrol (200 nM) alone or in combination. In addition, diet-induced obese mice were treated for 6-weeks with low (2 g/kg diet) or high (10 g/kg diet) dose HMB, Leucine (24 g/kg diet; 200% of normal level) or low (12.5 mg/kg diet) or high (225 mg/kg diet) dose resveratrol, alone or as combination with leucine-resveratrol or HMB-resveratrol. Results Fatty acid oxidation, AMPK, Sirt1 and Sirt3 activity in 3T3-L1 adipocytes and in muscle cells, were significantly increased by the combinations compared to the individual treatments. Similarly, 6-week feeding of low-dose resveratrol combined with either leucine or its metabolite HMB to DIO mice increased adipose Sirt1 activity, muscle glucose and palmitate uptake (measured via PET/CT), insulin sensitivity (HOMAIR), improved inflammatory stress biomarkers (CRP, IL-6, MCP-1, adiponectin) and reduced adiposity comparable to the effects of high dose resveratrol, while low-dose resveratrol exerted no independent effect. Conclusion These data demonstrate that either leucine or its metabolite HMB may be combined with a low concentration of resveratrol to exert synergistic effects on Sirt1-dependent outcomes; this may result in more practical dosing of resveratrol in the management of obesity, insulin-resistance and diabetes

    Characterization of dissolved compounds in submerged anaerobic membrane bioreactors (SAMBRs).

    No full text
    Two submerged anaerobic membrane bioreactors (SAMBRs) with essentially 100% cell recycle (150 days retention time, SRT), one with powdered activated carbon addition (PAC 1.7 gL−1) and one without, were continuously fed a low-strength feed (450mgCODL−1) in order to investigatemembrane fouling and to characterize the foulants. The SAMBR which did not receive PAC experienced more fouling, and the molecular weight (MW) distribution showed that there was a greater amount of high-MW compounds in this reactor when compared with the reactor with PAC. Size exclusion chromatography showed that although extracellular polymeric substances (EPS) seemed to contribute to the soluble chemical oxygen demand (COD) inside the reactor, it was mainly rejected by the membrane. High-MW protein and carbohydrate material originating mainly from cell lysis and EPS seemed to be the main organics that contributed to the internal fouling of the membrane

    Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis

    No full text
    Amyloid is a complex pathologic matrix comprised principally of paracrystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloid diseases are rare, thus, routine diagnosis is often challenging. The glycosaminoglycans ubiquitously present in amyloid deposits are biochemically and electrochemically distinct from those found in the healthy tissues due to the high degree of sulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14, as novel agents for specifically targeting and imaging amyloid. Herein, we demonstrate that radiolabeled p5+14 effectively bound murine AA amyloid in vivo by using molecular imaging. Biotinylated peptide also reacted with the major forms of human amyloid in tissue sections as evidenced immunohistochemically. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients

    SPECT imaging of peripheral amyloid in mice by targeting hyper-sulfated heparan sulfate proteoglycans with specific scFv antibodies.

    No full text
    Item does not contain fulltextINTRODUCTION: Amyloid deposits are associated with a broad spectrum of disorders including monoclonal gammopathies, chronic inflammation, and Alzheimer's disease. In all cases, the amyloid pathology contains, in addition to protein fibrils, a plethora of associated molecules, including high concentrations of heparan sulfate proteoglycans (HSPGs). METHODS: We have evaluated radioiodinated scFvs that bind HS for their ability to image amyloid deposits in vivo. scFv's with different binding characteristics were isolated by phage display using HS extracted from bovine kidney or mouse and human skeletal muscle glycosaminoglycans (GAGs). Following purification and radioiodination, the biodistribution of (125)I-scFv's was assessed in mice with inflammation-associated AA amyloidosis or in amyloid-free mice by using SPECT imaging, biodistribution measurements and tissue autoradiography. RESULTS: Four different scFv's all showed binding in vivo to amyloid in the spleen, liver and kidney of diseased mice; however, three of the scFv's also bound to sites within these organs in disease free mice. One scFv specific for hypersulfated HSPGs preferentially bound amyloid and did not accumulate in healthy tissues. CONCLUSIONS: These data indicate that HS expressed in amyloid deposits has unique qualities that can be distinguished from HS in normal tissues. A scFv specific for rare hypersulfated HS was used to selectively image AA amyloid in mice with minimal retention in normal tissue.1 januari 201

    Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy

    No full text
    Purpose: Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined.Methods: We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes.Results: Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments.Conclusion: We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation
    corecore