109 research outputs found

    IReport: A generalised Galaxy solution for integrated experimental reporting

    Get PDF
    Background: Galaxy offers a number of visualisation options with components, such as Trackster, Circster and Galaxy Charts, but currently lacks the ability to easily combine outputs from different tools into a single view or report. A number of tools produce HTML reports as output in order to combine the various output files from a single tool; however, this requires programming and knowledge of HTML, and the reports must be custom-made for each new tool.Findings: We have developed a generic and flexible reporting tool for Galaxy, iReport, that allows users to create interactive HTML reports directly from the Galaxy UI, with the ability to combine an arbitrary number of outputs from any number of different tools. Content can be organised into different tabs, and interactivity can be added to components. To demonstrate the capability of iReport we provide two publically available examples, the first is an iReport explaining about iReports, created for, and using content from the recent Galaxy Community Conference 2014. The second is a genetic report based on a trio analysis to determine candidate pathogenic variants which uses our previously developed Galaxy toolset for whole-genome NGS analysis, CGtag. These reports may be adapted for outputs from any sequencing platform and any results, such as omics data, non-high throughput results and clinical variables.Conclusions: iReport provides a secure, collaborative, and flexible web-based reporting system that is compatible with Galaxy (and non-Galaxy) generated content. We demonstrate its value with a real-life example of reporting genetic trio-analysis

    KREAP: An automated Galaxy platform to quantify in vitro re-epithelialization kinetics

    Get PDF
    Background: In vitro scratch assays have been widely used to study the influence of bioactive substances on the processes of cell migration and proliferation that are involved in re-epithelialization

    Distance transform: a tool for the study of animal colour patterns

    Get PDF
    Summary The information in animal colour patterns plays a key role in many ecological interactions; quantification would help us to study them, but this is problematic. Comparing patterns using human judgement is subjective and inconsistent. Traditional shape analysis is unsuitable as patterns do not usually contain conserved landmarks. Alternative statistical approaches also have weaknesses, particularly as they are generally based on summary measures that discard most or all of the spatial information in a pattern. We present a method for quantifying the similarity of a pair of patterns based on the distance transform of a binary image. The method compares the whole pattern, pixel by pixel, while being robust to small spatial variations among images. We demonstrate the utility of the distance transform method using three ecological examples. We generate a measure of mimetic accuracy between hoverflies (Diptera: Syrphidae) and wasps (Hymenoptera) based on abdominal pattern and show that this correlates strongly with the perception of a model predator (humans). We calculate similarity values within a group of mimetic butterflies and compare this with proposed pairings of Müllerian comimics. Finally, we characterise variation in clypeal badges of a paper wasp (Polistes dominula) and compare this with previous measures of variation. While our results generally support the findings of existing studies that have used simpler ad hoc methods for measuring differences between patterns, our method is able to detect more subtle variation and hence reveal previously overlooked trends

    CGtag: Complete genomics toolkit and annotation in a cloud-based Galaxy

    Get PDF
    Background: Complete Genomics provides an open-source suite of command-line tools for the analysis of their CG-formatted mapped sequencing files. Determination of; for example, the functional impact of detected variants, requires annotation with various databases that often require command-line and/or programming experience; thus, limiting their use to the average research scientist. We have therefore implemented this CG toolkit, together with a number of annotation, visualisation and file manipulation tools in Galaxy called CGtag (Complete Genomics Toolkit and Annotation in a Cloud-based Galaxy).Findings: In order to provide research scientists with web-based, simple and accurate analytical and visualisation applications for the selection of candidate mutations from Complete Genomics data, we have implemented the open-source Complete Genomics tool set, CGATools, in Galaxy. In addition we implemented some of the most popular command-line annotation and visualisation tools to allow research scientists to select candidate pathological mutations (SNV, and indels). Furthermore, we have developed a cloud-based public Galaxy instance to host the CGtag toolkit and other associated modules.Conclusions: CGtag provides a user-friendly interface to all research scientists wishing to select candidate variants from CG or other next-generation sequencing platforms' data. By using a cloud-based infrastructure, we can also assure sufficient and on-demand computation and storage resources to handle the analysis tasks. The tools are freely available for use from an NBIC/CTMM-TraIT (The Netherlands Bioinformatics Center/Center for Translational Molecular Medicine) cloud-based Galaxy instance, or can be installed to a local (production) Galaxy via the NBIC Galaxy tool shed

    Antigen receptor sequencing of paired bone marrow samples shows homogeneous distribution of acute lymphoblastic leukemia subclones

    Get PDF
    In B-cell precursor acute lymphoblastic leukemia, the initial leukemic cells share the same antigen receptor gene rearrangements. However, due to ongoing rearrangement processes, leukemic cells with different gene rearrangement patterns can develop, resulting in subclone formation. We studied leukemic subclones and their distribution in the bone marrow and peripheral blood at diagnosis

    Development and evaluation of a culture-free microbiota profiling platform (MYcrobiota) for clinical diagnostics

    Get PDF
    Microbiota profiling has the potential to greatly impact on routine clinical diagnostics by detecting DNA derived from live, fastidious, and dead bacterial cells present within clinical samples. Such results could potentially be used to benefit patients by influencing antibiotic prescribing practices or to generate new classical-based diagnostic methods, e.g., culture or PCR. However, technical flaws in 16S rRNA gene next-generation sequencing (NGS) protocols, together with the requirement for access to bioinformatics, currently hinder the introduction of microbiota analysis into clinical diagnostics. Here, we report on the development and evaluation of an “end-to-end” microbiota profiling platform (MYcrobiota), which combines our previously validated micelle PCR/NGS (micPCR/NGS) methodology with an easy-to-use, dedicated bioinf

    Automated Selection of Hotspots (ASH): enhanced automated segmentation and adaptive step finding for Ki67 hotspot detection in adrenal cortical cancer

    Get PDF
    BACKGROUND: In prognosis and therapeutics of adrenal cortical carcinoma (ACC), the selection of the most active areas in proliferative rate (hotspots) within a slide and objective quantification of immunohistochemical Ki67 Labelling Index (LI) are of critical importa

    ImmunoGlobulin galaxy (IGGalaxy) for simple determination and quantitation of immunoglobulin heavy chain rearrangements from NGS

    Get PDF
    Background: Sequence analysis of immunoglobulin heavy chain (IGH) gene rearrangements and frequency analysis is a powerful tool for studying the immune repertoire, immune responses and immune dysregulation in health and disease. The challenge is to provide user friendly, secure and reproducible analytical services that are available for both small and large laboratories which are determining VDJ repertoire using NGS technology. Results: In this study we describe ImmunoGlobulin Galaxy (IGGalaxy)- a convenient web based application for analyzing next-generation sequencing results and reporting IGH gene rearrangements for both repertoire and clonality studies. IGGalaxy has two analysis options one using the built in igBLAST algorithm and the second using output from IMGT; in either case repertoire summaries for the B-cell populations tested are available. IGGalaxy supports multi-sample and multi-replicate input analysis for both igBLAST and IMGT/HIGHV-QUEST. We demonstrate the technical validity of this platform using a standard dataset, S22, used for benchmarking the performance of antibody alignment utilities with a 99.9 % concordance with previous results. Re-analysis of NGS data from our samples of RAG-deficient patients demonstrated the validity and user friendliness of this tool. Conclusions: IGGalaxy provides clinical researchers with detailed insight into the repertoire of the B-cell population per individual sequenced and between control and pathogenic genomes. IGGalaxy was developed for 454 NGS results but is capable of analyzing alternative NGS data (e.g. Illumina, Ion Torrent). We demonstrate the use of a Galaxy virtual machine to determine the VDJ repertoire for reference data and from B-cells taken from immune deficient patients. IGGalaxy is available as a VM for download and use on a desktop PC or on a server

    A novel nicastrin mutation in a three-generation Dutch family with hidradenitis suppurativa: a search for functional significance

    Get PDF
    Background: Mutations in the γ-secretase enzyme subunits have been described in multiple kindreds with familial hidradenitis suppurativa (HS). Objective: In this study, we report a novel nicastrin (NCSTN) mutation causing HS in a Dutch family. We sought to explore the immunobiological function of NCSTN mutations using data of the Immunological Genome Project. Methods: Blood samples of three affected and two unaffected family members were collected. Whole-genome sequencing was performed using genomic DNA isolated from peripheral blood leucocytes. Sanger sequencing was done to confirm the causative NCSTN variant and the familial segregation. The microarray data set of the Immunological Genome Project was used for thorough dissection of the expression and function of wildtype NCSTN in the immune system. Results: In a family consisting of 23 members, we found an autosomal dominant inheritance pattern of HS and detected a novel splice site mutation (c.1912_1915delCAGT) in the NCSTN gene resulting in a frameshift and subsequent premature stop. All affected individuals had HS lesions on non-flexural and atypical locations. Wildtype NCSTN appears to be upregulated in myeloid cells like monocytes and macrophages, and in mesenchymal cells such as fibroblastic reticular cells and fibroblasts. In addition, within the 25 highest co-expressed genes with NCSTN we identified CAPNS1, ARNT and PPARD. Conclusion: This study reports the identification a novel NCSTN gene splice site mutation which causes familial HS. The associated immunobiological functions of NCSTN and its co-expressed genes ARNT and PPARD link genetics to the most common environmental and metabolic HS risk factors which are smoking and obesity
    corecore