1,630 research outputs found

    The Role of Ionic Liquid Breakdown in the Electrochemical Metallization of VO2: An NMR Study of Gating Mechanisms and VO2 Reduction.

    Get PDF
    Metallization of initially insulating VO2 via ionic liquid electrolytes, otherwise known as electrolyte gating, has recently been a topic of much interest for possible applications such as Mott transistors and memory devices. It is clear that the metallization takes place electrochemically, and, in particular, there has previously been extensive evidence for the removal of small amounts of oxygen during ionic liquid gating. Hydrogen intercalation has also been proposed, but the source of the hydrogen has remained unclear. In this work, solid-state magic angle spinning NMR spectroscopy (1H, 2H, 17O, and 51V) is used to investigate the thermal metal-insulator transition in VO2, before progressing to catalytically hydrogenated VO2 and electrochemically metallized VO2. In these experiments electrochemical metallization of bulk VO2 particles is shown to be associated with intercalation of hydrogen, the degree of which can be measured with quantitative 1H NMR spectroscopy. Possible sources of the hydrogen are explored, and by using a selectively deuterated ionic liquid, it is revealed that the hydrogenation is due to deprotonation of the ionic liquid; specifically, for the commonly used dialkylimidazolium-based ionic liquids, it is the "carbene" proton that is responsible. Increasing the temperature of the electrochemistry is shown to increase the degree of hydrogenation, forming first a less hydrogenated metallic orthorhombic phase then a more hydrogenated insulating Curie-Weiss paramagnetic orthorhombic phase, both of which were also observed for catalytically hydrogenated VO2. The NMR results are supported by magnetic susceptibility measurements, which corroborate the degree of Pauli and Curie-Weiss paramagnetism. Finally, NMR spectroscopy is used to identify the presence of hydrogen in an electrolyte gated thin film of VO2, suggesting that electrolyte breakdown, proton intercalation, and reactions with decomposition products within the electrolyte should not be ignored when interpreting the electronic and structural changes observed in electrochemical gating experiments.Oppenheimer Foundation The Winston Churchill Foundation of the United States Herchel Smith Scholarship EPSRC (EP/MO09521/1) EU H2020 program “Phase Change Switch” Alexander von Humboldt Foundatio

    Cytomegalovirus Infections among African-Americans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since African-Americans have twice the prevalence of cytomegalovirus (CMV) infections as age-matched Caucasians we sought to determine the ages and possible sources of infection of African-American children.</p> <p>Methods</p> <p>Subjects were 157 African-American healthy children and adolescents and their 113 household adults in Richmond VA. Families completed a questionnaire, provided saliva for antibody testing, and adolescents were interviewed regarding sexual activity.</p> <p>Results</p> <p>Regardless of age CMV seropositivity was not associated with gender, breast feeding, health insurance, sexual activity, or household income, education, or size. In the final regression model, prior CMV infection in adults was over two-fold higher than in children (chi-square = 18.8, p < 0.0001). At one year of age the CMV seropositivity rate was 11% (95%CI = 4% – 24%) and increased 1.8% each year until age 13 years. Between ages 13 and 20 years the CMV seropositivity rate remained between 22% and 33%. For adults, the CMV seropositivity rate was 84% in 21 year olds (95%CI = 69%–.92%). There was no association between CMV infections of the children and their mothers but CMV infections among siblings were associated.</p> <p>Conclusion</p> <p>We observed that African-American children had CMV seroprevalence rates by age 20 years at less than one-half of that of their adult mothers and caregivers. Sibling-to-sibling transmission was a likely source of CMV infections for the children. The next generation of African-American women may be highly susceptible to a primary CMV infection during pregnancy and may benefit from a CMV vaccine.</p

    Congenital Cytomegalovirus Mortality in the United States, 1990–2006

    Get PDF
    Cytomegalovirus (CMV) is a member of the herpes family of viruses, which is transmitted by sexual and non-sexual contact. Human CMV causes a wide variety of infection and illness in healthy adults, in those with compromised immune systems (such as AIDS), in those with cardiovascular disease, and in pregnant women who can pass the infection to their unborn child (congenital CMV). Treatment options for congenital CMV are limited and no effective vaccine to protect against CMV currently exists. Previous studies have demonstrated that African Americans and Mexican Americans are at an increased risk for congenital CMV infections. In this study, the authors examined death certificate data of US Residents from 1990–2006 in which congenital CMV was listed as one of the diagnoses at death. The analysis demonstrated that there is a significant burden of congenital CMV deaths in infants (<1 year old) with African Americans and Native Americans overrepresented. This study helps quantify congenital CMV deaths among US residents and adds further support to the importance of funding CMV vaccine research

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    An irradiated brown-dwarf companion to an accreting white dwarf

    Get PDF
    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor)1, 2. The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown3, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor4, 5. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are comparable

    Stabilizing All Kahler Moduli in Type IIB Orientifolds

    Get PDF
    We describe a simple and robust mechanism that stabilizes all Kahler moduli in Type IIB orientifold compactifications. This is shown to be possible with just one non-perturbative contribution to the superpotential coming from either a D3-instanton or D7-branes wrapped on an ample divisor. This moduli-stabilization mechanism is similar to and motivated by the one used in the fluxless G_2 compactifications of M-theory. After explaining the general idea, explicit examples of Calabi-Yau orientifolds with one and three Kahler moduli are worked out. We find that the stabilized volumes of all two- and four-cycles as well as the volume of the Calabi-Yau manifold are controlled by a single parameter, namely, the volume of the ample divisor. This feature would dramatically constrain any realistic models of particle physics embedded into such compactifications. Broad consequences for phenomenology are discussed, in particular the dynamical solution to the strong CP-problem within the framework.Comment: RevTeX, 24 pages, 2 tables, 1 figure

    Propulsion in cubomedusae : mechanisms and utility

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56393, doi:10.1371/journal.pone.0056393.Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.This work was supported by an ONR MURI award (N000140810654) and National Science Foundation grant OCE 0623508 to JHC, SPC, JOD. And the work was supported by the Roger Williams University Foundation to Promote Scholarship

    Disseminating Research News in HCI: Perceived Hazards, How-To's, and Opportunities for Innovation

    Full text link
    Mass media afford researchers critical opportunities to disseminate research findings and trends to the general public. Yet researchers also perceive that their work can be miscommunicated in mass media, thus generating unintended understandings of HCI research by the general public. We conduct a Grounded Theory analysis of interviews with 12 HCI researchers and find that miscommunication can occur at four origins along the socio-technical infrastructure known as the Media Production Pipeline (MPP) for science news. Results yield researchers' perceived hazards of disseminating their work through mass media, as well as strategies for fostering effective communication of research. We conclude with implications for augmenting or innovating new MPP technologies.Comment: 10 pages, 2 figures, accepted paper to CHI 2020 conferenc

    Consumer perceptions of co-branding alliances: Organizational dissimilarity signals and brand fit

    Get PDF
    This study explores how consumers evaluate co-branding alliances between dissimilar partner firms. Customers are well aware that different firms are behind a co-branded product and observe the partner firms’ characteristics. Drawing on signaling theory, we assert that consumers use organizational characteristics as signals in their assessment of brand fit and for their purchasing decisions. Some organizational signals are beyond the control of the co-branding partners or at least they cannot alter them on short notice. We use a quasi-experimental design and test how co-branding partner dissimilarity affects brand fit perception. The results show that co-branding partner dissimilarity in terms of firm size, industry scope, and country-of-origin image negatively affects brand fit perception. Firm age dissimilarity does not exert significant influence. Because brand fit generally fosters a benevolent consumer attitude towards a co-branding alliance, the findings suggest that high partner dissimilarity may reduce overall co-branding alliance performance
    • 

    corecore