902 research outputs found
Recommended from our members
WebSOS: An Overlay-based System For Protecting Web Servers From Denial of Service Attacks
We present WebSOS, a novel overlay-based architecture that provides guaranteed access to a web server that is targeted by a denial of service (DoS) attack. Our approach exploits two key characteristics of the web environment: its design around a human–centric interface, and the extensibility inherent in many browsers through downloadable "applets." We guarantee access to a web server for a large number of previously unknown users, without requiring pre-existing trust relationships between users and the system, by using reverse Graphic Turing Tests. Furthermore, our system makes it easy for service providers to charge users, providing incentives to a commercial offering of the service. Users can dynamically decide whether to use the WebSOS overlay, based on the prevailing network conditions. Our prototype requires no modifications to either servers or browsers, and makes use of Graphical Turing Tests, web proxies, and client authentication using the SSL/TLS protocol, all readily supported by modern browsers. We then extend this system with a credential-based micropayment scheme that combines access control and payment authorization in one operation. Turing tests ensure that malicious code, such as a worm, cannot abuse a user's micropayment wallet. We use the WebSOS prototype to conduct a performance evaluation over the Internet using PlanetLab, a testbed for experimentation with network overlays. We determine the end-to-end latency using both a chord-based approach and our shortcut extension. Our evaluation shows the latency increase by a factor of 7 and 2 respectively, confirming our simulation results
Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity
We perform 3D numerical simulations in full general relativity to study the
stability of rapidly rotating, supramassive neutron stars at the mass-shedding
limit to dynamical collapse. We adopt an adiabatic equation of state with
and focus on uniformly rotating stars. We find that the onset of
dynamical instability along mass-shedding sequences nearly coincides with the
onset of secular instability. Unstable stars collapse to rotating black holes
within about one rotation period. We also study the collapse of stable stars
which have been destabilized by pressure depletion (e.g. via a phase
transition) or mass accretion. In no case do we find evidence for the formation
of massive disks or any ejecta around the newly formed Kerr black holes, even
though the progenitors are rapidly rotating.Comment: 16 pages, to appear in Phys. Rev.
Computing the Complete Gravitational Wavetrain from Relativistic Binary Inspiral
We present a new method for generating the nonlinear gravitational wavetrain
from the late inspiral (pre-coalescence) phase of a binary neutron star system
by means of a numerical evolution calculation in full general relativity. In a
prototype calculation, we produce 214 wave cycles from corotating polytropes,
representing the final part of the inspiral phase prior to reaching the ISCO.
Our method is based on the inequality that the orbital decay timescale due to
gravitational radiation is much longer than an orbital period and the
approximation that gravitational radiation has little effect on the structure
of the stars. We employ quasi-equilibrium sequences of binaries in circular
orbit for the matter source in our field evolution code. We compute the
gravity-wave energy flux, and, from this, the inspiral rate, at a discrete set
of binary separations. From these data, we construct the gravitational waveform
as a continuous wavetrain. Finally, we discuss the limitations of our current
calculation, planned improvements, and potential applications of our method to
other inspiral scenarios.Comment: 4 pages, 4 figure
Post-Newtonian Models of Binary Neutron Stars
Using an energy variational method, we calculate quasi-equilibrium
configurations of binary neutron stars modeled as compressible triaxial
ellipsoids obeying a polytropic equation of state. Our energy functional
includes terms both for the internal hydrodynamics of the stars and for the
external orbital motion. We add the leading post-Newtonian (PN) corrections to
the internal and gravitational energies of the stars, and adopt hybrid orbital
terms which are fully relativistic in the test-mass limit and always accurate
to PN order. The total energy functional is varied to find quasi-equilibrium
sequences for both corotating and irrotational binaries in circular orbits. We
examine how the orbital frequency at the innermost stable circular orbit
depends on the polytropic index n and the compactness parameter GM/Rc^2. We
find that, for a given GM/Rc^2, the innermost stable circular orbit along an
irrotational sequence is about 17% larger than the innermost secularly stable
circular orbit along the corotating sequence when n=0.5, and 20% larger when
n=1. We also examine the dependence of the maximum neutron star mass on the
orbital frequency and find that, if PN tidal effects can be neglected, the
maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys.
Rev. D, replaced version contains updated reference
Far Ultraviolet Absolute Flux of alpha Virginis
We present the far ultraviolet spectrum of alpha Virginis taken with EURD
spectrograph on-board MINISAT-01. The spectral range covered is from ~900 to
1080 A with 5 A spectral resolution. We have fitted Kurucz models to IUE
spectra of alpha Vir and compared the extension of the model to our wavelengths
with EURD data. This comparison shows that EURD fluxes are consistent with the
prediction of the model within 20-30%, depending on the reddening assumed. EURD
fluxes are consistent with Voyager observations but are ~60% higher than most
previous rocket observations of alpha Vir.Comment: 13 pages, 4 figures. Submitted to The Astrophysical Journa
Relativistic Hydrodynamic Evolutions with Black Hole Excision
We present a numerical code designed to study astrophysical phenomena
involving dynamical spacetimes containing black holes in the presence of
relativistic hydrodynamic matter. We present evolutions of the collapse of a
fluid star from the onset of collapse to the settling of the resulting black
hole to a final stationary state. In order to evolve stably after the black
hole forms, we excise a region inside the hole before a singularity is
encountered. This excision region is introduced after the appearance of an
apparent horizon, but while a significant amount of matter remains outside the
hole. We test our code by evolving accurately a vacuum Schwarzschild black
hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder
dust collapse, and the collapse of nonrotating and rotating stars. These
systems are tracked reliably for hundreds of M following excision, where M is
the mass of the black hole. We perform these tests both in axisymmetry and in
full 3+1 dimensions. We then apply our code to study the effect of the stellar
spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly
rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in
agreement with previous simulations. When J/M^2>1, the collapsing star forms a
torus which fragments into nonaxisymmetric clumps, capable of generating
appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR
The low-order wavefront sensor for the PICTURE-C mission
The PICTURE-C mission will fly a 60 cm off-axis unobscured telescope and two high-contrast coronagraphs in successive high-altitude balloon flights with the goal of directly imaging and spectrally characterizing visible scattered light from exozodiacal dust in the interior 1-10 AU of nearby exoplanetary systems. The first flight in 2017 will use a 10^(-4) visible nulling coronagraph (previously flown on the PICTURE sounding rocket) and the second flight in 2019 will use a 10^(-7) vector vortex coronagraph. A low-order wavefront corrector (LOWC) will be used in both flights to remove time-varying aberrations from the coronagraph wavefront. The LOWC actuator is a 76-channel high-stroke deformable mirror packaged on top of a tip-tilt stage. This paper will detail the selection of a complementary high-speed, low-order wavefront sensor (LOWFS) for the mission. The relative performance and feasibility of several LOWFS designs will be compared including the Shack-Hartmann, Lyot LOWFS, and the curvature sensor. To test the different sensors, a model of the time-varying wavefront is constructed using measured pointing data and inertial dynamics models to simulate optical alignment perturbations and surface deformation in the balloon environment
Equilibrium and stability of supermassive stars in binary systems
We investigate the equilibrium and stability of supermassive stars of mass M
\agt 10^5M_{\odot} in binary systems. We find that corotating binaries are
secularly unstable for close, circular orbits with r \alt
4R(M/10^6M_{\odot})^{1/6} where is the orbital separation and the
stellar radius. We also show that corotation cannot be achieved for distant
orbits with r \agt 12 R (M/10^6M_{\odot})^{-11/24}, since the timescale for
viscous angular momentum transfer associated with tidal torques is longer than
the evolution timescale due to emission of thermal radiation. These facts
suggest that the allowed mass range and orbital separation for corotating
supermassive binary stars is severely restricted. In particular, for
supermassive binary stars of large mass M \agt 6\times 10^6M_{\odot},
corotation cannot be achieved, as viscosity is not adequate to mediate the
transfer between orbital and spin angular momentum. One possible outcome for
binary supermassive stars is the onset of quasi-radial, relativistic
instability which drives each star to collapse prior to merger: We discuss
alternative outcomes of collapse and possible spin states of the resulting
black holes. We estimate the frequency and amplitude of gravitational waves
emitted during several inspiral and collapse scenarios.Comment: 20 pages, to be published in PR
In search of the authentic nation: landscape and national identity in Canada and Switzerland
While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration
A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3
Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors1, 2, 3, 4, 5, 6, 7, 8, 9. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications10, 11, 12, 13, 14, 15. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm−1 at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides
- …
