2 research outputs found

    Competition between Dewetting and Cross-Linking in Poly(<i>N</i>-vinylpyrrolidone)/Polystyrene Bilayer Films

    No full text
    We investigated the dewetting of metastable poly(<i>N</i>-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. <i>ACS Appl. Mater. Interfaces</i> <b>2010</b>, <i>2</i>, 2399–2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems

    Estimation of Copolymer/Water Interfacial Tensions Using Pendant Drop Tensiometry

    No full text
    Copolymer/water interfacial tensions of statistical copolymers of styrene/<i>n</i>-butyl acrylate were estimated by pendant drop tensiometry using an “inverse” configuration according to which a drop of water was formed in toluene/copolymer solutions. The study first involved the precise measurement of copolymer solutions density using pycnometry. Subsequently, interfacial tensions of copolymer solutions against water were plotted as a function of copolymer concentration in toluene. Several methods were explored to fit the experimental data and obtain estimates of copolymer/water interfacial tensions at 100% copolymer concentration in toluene by extrapolation. The Belton–Evans extrapolation resulted in the best fit with the experimental data. When plotted as a function of the styrene composition of the copolymer, the interfacial tensions estimates followed an additivity relationship. This enabled estimation of the copolymer/water interfacial tensions directly from their respective homopolymer/water interfacial tensions values. These results are particularly useful for the prediction of composite particle morphology involving copolymerization of multiple monomers
    corecore