18,940 research outputs found

    Atmospheric contaminant sensor. Book 2: Appendices

    Get PDF
    Appendices containing equipment specifications and performance test data of the atmospheric contaminant sensor for submarines are presented

    Astrometric Discovery of GJ 802b: In the Brown Dwarf Oasis?

    Full text link
    The Stellar Planet Survey is an ongoing astrometric search for giant planets and brown dwarfs around a sample of about 30 M-dwarfs. We have discovered several low-mass companions by measuring the motion of our target stars relative to their reference frames. The lowest mass discovery thus far is GJ 802b, a companion to the M5-dwarf GJ 802A. The orbital period is 3.14 +/- 0.03 y, the system mass is 0.214 +/- 0.045 Msolar, and the semi-major axis is 1.28 +/- 0.10 AU or 81 +/- 6 mas. Imaging observations indicate that GJ 802b is likely to be a brown dwarf with the astrometrically determined mass 0.058 +/- 0.021 Msolar (one sigma limits). The remaining uncertainty in the orbit is the eccentricity that is now loosely constrained. We discuss how the system age limits the mass and the prospects to further narrow the mass range when e is more precisely determined.Comment: 13 pages, 6 figures, accepted for publication in ApJ on May 9, 200

    Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time

    Get PDF
    The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so in the small ensemble size limit. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with resepct to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz '63 and '96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise

    A Non-Cooperative Power Control Game for Multi-Carrier CDMA Systems

    Full text link
    In this work, a non-cooperative power control game for multi-carrier CDMA systems is proposed. In the proposed game, each user needs to decide how much power to transmit over each carrier to maximize its overall utility. The utility function considered here measures the number of reliable bits transmitted per joule of energy consumed. It is shown that the user's utility is maximized when the user transmits only on the carrier with the best "effective channel". The existence and uniqueness of Nash equilibrium for the proposed game are investigated and the properties of equilibrium are studied. Also, an iterative and distributed algorithm for reaching the equilibrium (if it exists) is presented. It is shown that the proposed approach results in a significant improvement in the total utility achieved at equilibrium compared to the case in which each user maximizes its utility over each carrier independently.Comment: To appear in Proceedings of the 2005 IEEE Wireless Communications and Networking Conference, New Orleans, LA, March 13 - 17, 200

    Calibrating the Galaxy Halo - Black Hole Relation Based on the Clustering of Quasars

    Full text link
    The observed number counts of quasars may be explained either by long-lived activity within rare massive hosts, or by short-lived activity within smaller, more common hosts. It has been argued that quasar lifetimes may therefore be inferred from their clustering length, which determines the typical mass of the quasar host. Here we point out that the relationship between the mass of the black-hole and the circular velocity of its host dark-matter halo is more fundamental to the determination of the clustering length. In particular, the clustering length observed in the 2dF quasar redshift survey is consistent with the galactic halo - black-hole relation observed in local galaxies, provided that quasars shine at ~10-100% of their Eddington luminosity. The slow evolution of the clustering length with redshift inferred in the 2dF quasar survey favors a black-hole mass whose redshift-independent scaling is with halo circular velocity, rather than halo mass. These results are independent from observations of the number counts of bright quasars which may be used to determine the quasar lifetime and its dependence on redshift. We show that if quasar activity results from galaxy mergers, then the number counts of quasars imply an episodic quasar lifetime that is set by the dynamical time of the host galaxy rather than by the Salpeter time. Our results imply that as the redshift increases, the central black-holes comprise a larger fraction of their host galaxy mass and the quasar lifetime gets shorter.Comment: 10 pages, 5 figures. Submitted to Ap

    ISCCP CX observations during the FIRE/SRB Wisconsin Experiment from October 14 through November 2, 1986

    Get PDF
    Maps and tables are presented which show 45 satellite derived physical, radiation, or cloud parameters from ISCCP CX tapes during the FIRE/SRB Wisconsin experiment region from October 14 through November 2, 1986. Pixel locations selected for presentation are for an area which coincided with a 100 x 100 km array of evenly spaced ground truth sites. Area-averaged parameters derived from the ISSCP data should be consistent with area averages from the groundtruth stations

    Astrometric Discovery of GJ 164B

    Full text link
    We discovered a low-mass companion to the M-dwarf GJ 164 with the CCD-based imaging system of the Stellar Planet Survey (STEPS) astrometric program. The existence of GJ 164B was confirmed with Hubble Space Telescope NICMOS imaging observations. A high-dispersion spectral observation in V sets a lower limit of delta m> 2.2 mag between the two components of the system. Based upon our parallax value of 0.082 +/- 0.008, we derive the following orbital parameters: P = 2.04 +/- 0.03 y, a = 1.03 +/- 0.03 AU, and Mtotal = 0.265 +/- 0.020 MSun. The component masses are MA = 0.170 +/- 0.015 MSun and MB = 0.095 +/- 0.015 MSun. Based on its mass, colors, and spectral properties, GJ 164B has spectral type M6-8 V.Comment: pdf file 14 pages with 6 fig

    Icosahedral (A5) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing

    Full text link
    We investigate the possibility of using icosahedral symmetry as a family symmetry group in the lepton sector. The rotational icosahedral group, which is isomorphic to A5, the alternating group of five elements, provides a natural context in which to explore (among other possibilities) the intriguing hypothesis that the solar neutrino mixing angle is governed by the golden ratio. We present a basic toolbox for model-building using icosahedral symmetry, including explicit representation matrices and tensor product rules. As a simple application, we construct a minimal model at tree level in which the solar angle is related to the golden ratio, the atmospheric angle is maximal, and the reactor angle vanishes to leading order. The approach provides a rich setting in which to investigate the flavor puzzle of the Standard Model.Comment: 22 pages, version to be published in Phys. Rev.
    • …
    corecore