8 research outputs found
Highly Efficient, Stable, and Ductile Ternary Nonfullerene Organic Solar Cells from a Two-Donor Polymer Blend
Organic solar cells (OSCs) are one of the most promising costâeffective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and longâterm stability remains challenging, particularly if the material choice is restricted by rollâtoâroll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:ITâM) that broke the 10% benchmark when bladeâcoated in air, a second donor material (PBDBâT) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene smallâmolecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs
Aryl-Perfluoroaryl Interaction in Two-Dimensional Organic-Inorganic Hybrid Perovskites Boosts Stability and Photovoltaic Efficiency.
Two-dimensional (2D) organicâinorganic hybrid perovskites (OIHPs) have showed impressive stability, compared to their three-dimensional (3D) counterparts. However, tuning the chemical structure of the organic cations to simultaneously improve the device performance and stability of 2D OIHP solar cells is rarely reported. Here, we demonstrate that by introducing a classic noncovalent aryl-perfluoroaryl interaction, 2D OIHP solar cells with 1:1 mixed phenethylammonium (PEA) and perfluorophenethylammonium (F5-PEA) can achieve an efficiency of >10% with much enhanced stability using a simple deposition at low temperature without using any additives. The competing effects of surface morphology and crystal orientation with an increased amount of F5-PEA result in the highest efficiency at a 1:1 ratio, while single-crystal studies reveal the expected aryl-perfluoroaryl interaction, accounting for the highest device stability of 2D OIHP solar cell at 1:1 ratio as well. This work provides an example where tuning the interactions of organic cations via molecular engineering can have a profound effect on device performance and stability of 2D OIHP solar cells
Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells
Although non-fullerene small molecular acceptors (NF-SMAs) are dominating current research in organic solar cells (OSCs), measurements of thermodynamics drivers and kinetic factors determining their morphological stability are lacking. Here, we delineate and measure such factors in crystallizable NF-SMA blends and discuss four model systems with respect to their meta-stability and degree of vitrification. We determine for the first time the amorphous-amorphous phase diagram in an NF-SMA system and show that its deep quench depth can result in severe burn-in degradation. We estimate the relative phase behavior of four other materials systems. Additionally, we derive room-temperature diffusion coefficients and conclude that the morphology needs to be stabilized by vitrification corresponding to diffusion constants below 10â22 cm2/s. Our results show that to achieve stability via rational molecular design, the thermodynamics, glass transition temperature, diffusion properties, and related structure-function relations need to be more extensively studied and understood. In recent years, the performance of organic solar cells (OSCs) has greatly improved with the development of novel non-fullerene small molecular acceptors (NF-SMA). The rapid increase in power conversion efficiency, now surpassing 15%, highlights an immediate and increasing need to understand the longevity and lifetime of NF-OSCs. However, the field relies mainly on a laborious trial-and-error approach to select polymer:NF-SMA pairs with desirable device stability. Here, we provide a structure-property relation that explains the morphological stability and burn-in degradation due to excessive demixing or crystallization. The framework presented in our study shows that a specific balance of interactions between polymer and NF-SMA can offer a short-term solution against excessive demixing. Long-term morphological stability that also suppresses crystallization can only be achieved by freezing in the initial quenched morphology through the use of polymers and/or NF-SMAs with low flexibility. This research provides a structure-property relation that sheds light on morphological stability of NF-OSCs by using the thermodynamic and the kinetic perspectives. We show that NF-OSCs can suffer from excessive amorphous-amorphous phase separation in the blends and crystallization of NF-SMA. The former instability channel can be eliminated in systems with an optimal miscibility, whereas the excessive phase separation in low miscibility systems and NF-SMA crystallization need to be suppressed through the utilization of polymers or NF-SMAs with low flexibility
Competition between Exceptionally Long-Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties
Intraâ and intermolecular ordering greatly impacts the electronic and optoelectronic properties of semiconducting polymers. The interrelationship between ordering of alkyl sidechains and conjugated backbones has yet to be fully detailed, despite much prior effort. Here, the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures, is reported. The sidechain ordering exhibits unusually large coherence lengths (â„70 nm), induces torsional/twisting backbone disorder, and results in a vertically multilayered nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in situ variable temperature scattering measurements in a model system poly{4â(5â(4,8âbis(3âbutylnonyl)â6âmethylbenzo[1,2âb:4,5âbâČ]dithiophenâ2âyl)thiophenâ2âyl)â2â(2âbutyloctyl)â5,6âdifluoroâ7â(5âmethylthiophenâ2âyl)â2Hâbenzo[d][1,2,3]triazole} (PBnDTâFTAZ) clearly delineate this competition of ordering that prevents simultaneous longârange order of both moieties. The longârange sidechain ordering can be exploited as a transient state to fabricate PBnDTâFTAZ films with an atypical edgeâon texture and 2.5Ă improved fieldâeffect transistor mobility. The observed influence of ordering between the moieties implies that improved molecular design can produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths
Unveiling the operation mechanism of layered perovskite solar cells
Layered perovskites have been shown to improve the stability of perovskite solar cells while its operation mechanism remains unclear. Here we investigate the process for the conversion of light to electrical current in high performance layered perovskite solar cells by examining its real morphology. The layered perovskite films in this study are found to be a mixture of layered and three dimensional (3D)-like phases with phase separations at micrometer and nanometer scale in both vertical and lateral directions. This phase separation is explained by the surface initiated crystallization process and the competition of the crystallization between 3D-like and layered perovskites. We further propose that the working mechanisms of the layered perovskite solar cells involve energy transfer from layered to 3D-like perovskite network. The impact of morphology on efficiency and stability of the hot-cast layered perovskite solar cells are also discussed to provide guidelines for the future improvement
Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites
Two-dimensional perovskites have emerged as more intrinsically stable materials for solar cells. Chemical tuning of spacer organic cations has attracted great interest due to their additional functionalities. However, how the chemical nature of the organic cations affects the properties of two-dimensional perovskites and devices is rarely reported. Here we demonstrate that the selection of spacer cations (i.e., selective fluorination of phenethylammonium) affects the film properties of two-dimensional perovskites, leading to different device performance of two-dimensional perovskite solar cells (average n = 4). Structural analysis reveals that different packing arrangements and orientational disorder of the spacer cations result in orientational degeneracy and different formation energies, largely explaining the difference in film properties. This work provides key missing information on how spacer cations exert influence on desirable electronic properties and device performance of two-dimensional perovskites via the weak and cooperative interactions of these cations in the crystal lattice
Effects of proton irradiation on flux-pinning properties of underdoped Ba(Fe0.96Co0.04)(2)As-2 pnictide superconductor
We study the effect of proton irradiation on Ba(Fe0.96Co0.04)2As2 superconducting single crystals from combined magnetisation and magnetoresistivity measurements. The study allows the extraction of the values of the apparent pinning energy U0 of the samples prior to and after irradiation, as well as comparison of the values of U0 obtained from the flux-flow reversible region with those from the flux-creep irreversible region. Irradiation reduces Tc modestly, but significantly reduces U0 in both regimes: the critical current density Jc is modified, most strikingly by the disappearance of the second magnetisation peak after irradiation. Analysis of the functional form of the pinning force and of the temperature dependence of Jc for zero field, indicates that proton irradiation in this case has not changed the pinning regime, but has introduced a high density of shallow point-like defects. By considering a model that takes into account the effect of disorder on the irreversibility line, the data suggests that irradiation produced a considerable reduction in the average effective disorder overall, consistent with the changes observed in U0 and Jc