141 research outputs found

    Finding Optimal Training Parameters for Quantum Generative Adversarial Networks

    Full text link
    Some of the most impressive achievements of contemporary Machine Learning systems comes from the GAN (Generative Adversarial Network) structure. DALLE-2 and GPT- 3, two of the most impressive and recognizable feats of ML in recent years, were both trained using adversarial techniques. The world of Quantum Computing is already well aware of the value of such techniques on near-term Quantum Hardware: QGANs provide a highly efficient method for loading classical data into a quantum state. We investigate the performance of these techniques in an attempt to determine some of the optimal training parameters in a Qiskit-style Parameterized Circuit QGAN framework

    Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice.

    Get PDF
    2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate was designed to replace perfluorooctanoic acid (PFOA), which has been mostly phased out of U.S. production due to environmental persistence, detectable human and wildlife serum concentrations, and reports of systemic toxicity. In rodent models, PFOA exposure suppresses T cell-dependent antibody responses (TDAR) and vaccine responses in exposed humans. To determine replacement compound effects on TDAR and related parameters, male and female C57BL/6 mice were gavaged with 0, 1, 10, or 100 mg/kg/day for 28 days. Mice immunized with antigen on day 24 were evaluated for TDAR and splenic lymphocyte subpopulations five days later. Serum and urine were collected for test compound concentrations and liver peroxisome proliferation was measured. Relative liver weight at 10 and 100 mg/kg and peroxisome proliferation at 100 mg/kg were increased in both sexes. TDAR was suppressed in females at 100 mg/kg. T lymphocyte numbers were increased in males at 100 mg/kg; B lymphocyte numbers were unchanged in both sexes. Females had less serum accumulation and higher clearance than males, and males had higher urine concentrations than females at all times and doses. While this PFOA-replacement compound appears less potent at suppressing TDAR relative to PFOA, it produces detectable changes in parameters affected by PFOA; further studies are necessary to determine its full immunomodulatory profile and potential synergism with other per- and polyfluoroalkyl substances of environmental concern

    Perfluorooctanoic Acid–Induced Immunomodulation in Adult C57BL/6J or C57BL/6N Female Mice

    Get PDF
    BackgroundPerfluorooctanoic acid (PFOA), an environmentally persistent compound of regulatory concern, has been reported to reduce antibody responses in mice at a single dose.ObjectiveThe aim of this study was to evaluate PFOA effects on humoral and cellular immunity using standard assays for assessing immune function, and to derive dose–response data.MethodsC57BL/6J mice received 0 or 30 mg PFOA/kg/day for 10 days; half of the exposed groups were switched to vehicle and half continued on PFOA for five days. C57BL/6N mice received 0–30 mg/kg/day of PFOA in drinking water for 15 days. Mice were immunized with sheep red blood cells or sensitized to bovine serum albumin in Freund’s complete adjuvant on day 10 of exposure; immune responses were determined 1 day post-exposure.ResultsWe found that 30 mg PFOA/kg/day given for 10 or 15 days reduced IgM synthesis; serum collected 1 day postexposure contained 8.4 × 104 or 2.7 × 105 ng PFOA/mL, respectively. IgM synthesis was suppressed at exposures ≥ 3.75 mg PFOA/kg/day in a dose-dependent manner, and IgG titers were elevated at 3.75 and 7.5 mg PFOA/kg/day. Serum PFOA at 3.75 mg/kg/day was 7.4 × 104 ng/mL 1 day postexposure, or 150-fold greater than the levels reported in individuals living near a PFOA production site. Using a second-degree polynomial model, we calculated a benchmark dose of 3 mg/kg/day, with a lower bound (95% confidence limit) of 1.75 mg/kg/day. Cell-mediated function was not affected.ConclusionsIgM antibodies were suppressed after PFOA exposure. The margin of exposure for reduced IgM antibody synthesis was approximately 150 for highly exposed human populations

    Legacy and Novel Per- and Polyfluoroalkyl Substances in Juvenile Seabirds from the U.S. Atlantic Coast

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, globally distributed chemicals. Legacy PFAS, including perfluorooctane sulfonate (PFOS), have been regularly detected in marine fauna but little is known about their current levels or the presence of novel PFAS in seabirds. We measured 36 emerging and legacy PFAS in livers from 31 juvenile seabirds from Massachusetts Bay, Narragansett Bay, and the Cape Fear River Estuary (CFRE), United States. PFOS was the major legacy perfluoroalkyl acid present, making up 58% of concentrations observed across all habitats (range: 11–280 ng/g). Novel PFAS were confirmed in chicks hatched downstream of a fluoropolymer production site in the CFRE: a perfluorinated ether sulfonic acid (Nafion byproduct 2; range: 1–110 ng/g) and two perfluorinated ether carboxylic acids (PFO4DA and PFO5DoDA; PFO5DoDA range: 5–30 ng/g). PFOS was inversely associated with phospholipid content in livers from CFRE and Massachusetts Bay individuals, while δ 13C, an indicator of marine versus terrestrial foraging, was positively correlated with some long-chain PFAS in CFRE chick livers. There is also an indication that seabird phospholipid dynamics are negatively impacted by PFAS, which should be further explored given the importance of lipids for seabirds

    The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure

    Get PDF
    Perfluorooctanoic acid (PFOA) is a known developmental toxicant in mice, with varied strain outcomes depending on dose and period of exposure. The impact of PFOA on female mouse pubertal development at low doses (≤1 mg/kg), however, has yet to be determined. Therefore, female offspring from CD-1 and C57Bl/6 dams exposed to PFOA, creating serum concentrations similar to humans, were examined for pubertal onset, including mammary gland development. Mouse pups demonstrated a shorter PFOA elimination half-life than that reported for adult mice. Prenatal exposure to PFOA caused significant mammary developmental delays in exposed female offspring in both strains. Delays started during puberty and persisted into young adulthood; severity was dose-dependent. In contrast, an evaluation of serum hormone levels and pubertal timing onset in the same offspring revealed no effects of PFOA compared to controls in either strain. Therefore, our data suggest that the mammary gland is more sensitive to the effects of early low level PFOA exposures compared to other pubertal endpoints, regardless of strain

    Microbiota alter metabolism and mediate neurodevelopmental toxicity of 17β-estradiol

    Get PDF
    Estrogenic chemicals are widespread environmental contaminants associated with diverse health and ecological effects. During early vertebrate development, estrogen receptor signaling is critical for many different physiologic responses, including nervous system function. Recently, host-associated microbiota have been shown to influence neurodevelopment. Here, we hypothesized that microbiota may biotransform exogenous 17-βestradiol (E2) and modify E2 effects on swimming behavior. Colonized zebrafish were continuously exposed to non-teratogenic E2 concentrations from 1 to 10 days post-fertilization (dpf). Changes in microbial composition and predicted metagenomic function were evaluated. Locomotor activity was assessed in colonized and axenic (microbe-free) zebrafish exposed to E2 using a standard light/dark behavioral assay. Zebrafish tissue was collected for chemistry analyses. While E2 exposure did not alter microbial composition or putative function, colonized E2-exposed larvae showed reduced locomotor activity in the light, in contrast to axenic E2-exposed larvae, which exhibited normal behavior. Measured E2 concentrations were significantly higher in axenic relative to colonized zebrafish. Integrated peak area for putative sulfonated and glucuronidated E2 metabolites showed a similar trend. These data demonstrate that E2 locomotor effects in the light phase are dependent on the presence of microbiota and suggest that microbiota influence chemical E2 toxicokinetics. More broadly, this work supports the concept that microbial colonization status may influence chemical toxicity

    Analysis of PFOA in dosed CD-1 mice. Part 2: Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups

    Get PDF
    Previous studies in mice with multiple gestational exposures to perfluorooctanoic acid (PFOA) demonstrate numerous dose dependent growth and developmental effects which appeared to worsen if offspring exposed in utero nursed from PFOA-exposed dams. To evaluate the disposition of PFOA in the pregnant and lactating dam and her offspring, time-pregnant CD-1 mice received a single 0, 0.1, 1, or 5 mg PFOA/kg BW dose (n = 25/dose group) by gavage on gestation day 17. Maternal and pup fluids and tissues were collected over time. Pups exhibited significantly higher serum PFOA concentrations than their respective dams, and their body burden increased after birth until at least postnatal day 8, regardless of dose. The distribution of milk:serum PFOA varied by dose and time, but was typically in excess of 0.20. These data suggest that milk is a substantial PFOA exposure route in mice and should be considered in risk assessment modeling designs for this compound
    corecore