32 research outputs found

    Mechanism-based model characterizing bidirectional interaction between PEGylated liposomal CKD-602 (S-CKD602) and monocytes in cancer patients

    Get PDF
    S-CKD602 is a PEGylated liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. The objective of this study was to characterize the bidirectional pharmacokinetic-pharmacodynamic (PK-PD) interaction between S-CKD602 and monocytes. Plasma concentrations of encapsulated CKD-602 and monocytes counts from 45 patients with solid tumors were collected following intravenous administration of S-CKD602 in the phase I study. The PK-PD models were developed and fit simultaneously to the PK-PD data, using NONMEM®. The monocytopenia after administration of S-CKD602 was described by direct toxicity to monocytes in a mechanism-based model, and by direct toxicity to progenitor cells in bone marrow in a myelosuppression-based model. The nonlinear PK disposition of S-CKD602 was described by linear degradation and irreversible binding to monocytes in the mechanism-based model, and Michaelis-Menten kinetics in the myelosuppression-based model. The mechanism-based PK-PD model characterized the nonlinear PK disposition, and the bidirectional PK-PD interaction between S-CKD602 and monocytes. © 2012 Cárdenas et al, publisher and licensee Dove Medical Press Ltd

    Drug–virus interaction: effect of administration of recombinant adenoviruses on the pharmacokinetics of docetaxel in a rat model

    Get PDF
    Modern cancer therapy combines recombinant viruses with traditional chemotherapeutic agents that are metabolized by hepatic cytochrome P450 3A4 (CYP3A4). A single dose of recombinant adenovirus (Ad) expressing beta-galactosidase (AdlacZ) significantly alters CYP3A2, the correlate of CYP3A4, in rats for 14 days. Recombinant adenovirus expressing human p53 (Adp53) also suppresses CYP3A2. Plasma clearance of docetaxel (DTX) in animals given AdlacZ (3.38 ± 0.22 L/h/kg) was significantly lower than that of those given DTX alone (6.41 ± 1.10 L/h/kg, p≤0.05). Area under the plasma concentration-time curve of DTX in rats given AdlacZ (2,987.37 ± 197.97 ng/ml/h) was significantly greater than those given drug alone (1,666.59 ± 317.04 ng/ml/h, p≤0.05). Both viruses prolonged DTX half-life (t1/2). Ad infection may cause significant variability in the pharmacokinetics and pharmacodynamics of anti-cancer agents and should be considered when designing therapeutic regimens for patients with viral infection and those enrolled in clinical trials employing recombinant viruses

    Plasma and tissue disposition of non-liposomal DB-67 and liposomal DB-67 in C.B-17 SCID mice

    No full text
    Purpose: DB-67 is a silatecan, 7-silyl-modified camptothecin, with enhanced lipophilicity and increased blood stability of the active-lactone ring. The generation of a liposomal formulation of DB-67 may be an attractive method of intravenous (IV) administration and may maintain DB-67 in the active-lactone form. We evaluated the tissue and plasma disposition of DB-67 lactone and hydroxy acid after administration of non-liposomal (NL) and liposomal (L) DB-67 in severe combined immunodeficient (SCID) mice. Methods: NL-DB-67 and L-DB-67 10 mg/kg IV×1 were administered via a tail vein in SCID mice. After dosing, mice (n=3 per time point) were euthanized and blood (∼1 ml) and tissue were collected from 5 min to 48 h after administration. DB-67 lactone and hydroxy acid concentrations in plasma and DB-67 total (sum of lactone and hydroxyl acid) concentrations in tissues were determined by high-performance liquid chromatography (HPLC) with fluorescence detection. Results: Clearance of DB-67 lactone after administration of NL-DB-67 and L-DB-67 were 1.6 and 3.5 l/h/m 2, respectively; DB-67 lactone half-lives after administration of NL-DB-67 and L-DB-67 were 1.4 and 0.9 h, respectively. The percentages of DB-67 lactone in plasma after administration of NL-DB-67 and L-DB-67 were 92% and 89%, respectively. Liver, kidney, spleen, and lung tissues had longer exposure times to DB-67 after administration of L-DB-67 compared with NL-DB-67. Conclusion: In plasma, the majority of DB-67 remained in the lactone form after administration of NL-DB-67 and L-DB-67. The plasma disposition of DB-67 was similar after administration of NL-DB-67 and L-DB-67, suggesting that most of the DB-67 is immediately released from the L-DB-67 formulation. Following administration of L-DB-67, the higher and longer exposure of DB-67 in the spleen, as compared with NL-DB-67, is consistent with splenic clearance of liposomes by the reticuloendothelial system. © 2007 Springer Science+Business Media, LLC
    corecore