85 research outputs found

    Recurrent mutations of BRCA1, BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland

    Get PDF
    Background Mutations in the BRCA1, BRCA2 and PALB2 genes are well-established risk factors for the development of breast and/or ovarian cancer. The frequency and spectrum of mutations in these genes has not yet been examined in the population of Southern Poland. Methods We examined the entire coding sequences of the BRCA1 and BRCA2 genes and genotyped a recurrent mutation of the PALB2 gene (c.509_510delGA) in 121 women with familial and/or early-onset breast or ovarian cancer from Southern Poland. Results A BRCA1 mutation was identified in 11 of 121 patients (9.1 %) and a BRCA2 mutation was identified in 10 of 121 patients (8.3 %). Two founder mutations of BRCA1 accounted for 91 % of all BRCA1 mutation carriers (c.5266dupC was identified in six patients and c.181 T > G was identified in four patients). Three of the seven different BRCA2 mutations were detected in two patients each (c.9371A > T, c.9403delC and c.1310_1313delAAGA). Three mutations have not been previously reported in the Polish population (BRCA1 c.3531delT, BRCA2 c.1310_1313delAAGA and BRCA2 c.9027delT). The recurrent PALB2 mutation c.509_510delGA was identified in two patients (1.7 %). Conclusions The standard panel of BRCA1 founder mutations is sufficiently sensitive for the identification of BRCA1 mutation carriers in Southern Poland. The BRCA2 mutations c.9371A > T and c.9403delC as well as the PALB2 mutation c.509_510delGA should be included in the testing panel for this population

    Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism

    Get PDF
    Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units
    • 

    corecore