28 research outputs found
Effect of the surface/water chemistry on the creation of watermarks
Although evaporation as a pure bulk phase transformation is well understood, when one adds solutes to the liquid, or brings the liquid into contact with a substrate, we obtain a new and rich variety of possible behaviors that we can access experimentally to better understand the drying dynamics of residual water droplets. Evaporation of sessile droplets with a small contact angle (below 90°) is studied here extensively on silicon substrates. We focused our work on the origin of the creation of watermarks on silicon wafers. A thorough understanding of droplet evaporation is of vital importance for examining the drying rate, the flow patterns observed inside drying drops, and the residual deposits. The concentration of each potential dissolved species (e.g. silica or silicic acid) can also be predicted and confronted to their solubility. We developed a theoretical model to predict the evaporation rate and the behavior of submillimetric droplets taking into account the characteristics of the ambient and the substrate during the drying process. We discuss also the topology of watermarks on silicon wafers in the case of a predominant evaporation phenomenon.status: publishe
Evaluation of plasma damage in patterned low-k structures by near-field scanning probe microwave microscope: effect of plasma ash chemistry
The effect of ash chemistry on dielectric constant of blanket and patterned low-k was studied using a near-field scanning probe microwave microscope, known commercially as NeoMetriK™ technology. Two common photoresist ash approaches with the same etch sequence were studied: plasma assisted sublimation of photoresist at elevated temperature and ion-assisted ash at room temperature. The results for blanket low-k agree well with the FTIR and water source ellipsometric porosimetry (WEP) measurements. The amount of sidewall damage measured in patterned structures before metallization confirms the expected trends.status: publishe
Evaluation of high-speed linear air-knife based wafer dryer
With the downscaling of devices, due to device geometry shrinkage, the total number of cleaning steps has increased dramatically. As a result, the number of drying cycles after cleaning has increased as well. As the device shrinks with the integration density increase, it is noteworthy that a perfect drying efficiency is mandatory to obtain a high performance device [. Basically, the mechanism of wafer drying in semiconductor industry can be explained as: first reducing the amount of liquid on the wafer surface by mechanical forces. There are some approaches for removing the liquid such as spinning, high pressure gas blowing by nozzle or air-jet, vertical withdrawal from the liquid bath, using surface gradient tension and so on [2]. Second: if the mechanical forces in the liquid removal part are not sufficient for drying and some droplets or a thin liquid layer remain on the wafer surface, complete drying will be achieved by evaporation of the remaining layer on the wafer. After this evaporation step, known as state transformation, the wafers will be completely dried. Evaporation of the remaining liquid layer is the main mechanism for generating drying defects (watermarks, residues, particles, and etc.)[3]. In this study, we propose a new methodology for semiconductor wafer drying based on a high-pressure gas flow. In comparison to conventional drying tools, the new drying set up combines high speed drying (wafer drying time down to 2 sec at 150mm.s-1) and a low number of added drying defects.status: publishe
Time-resolved monitoring of cavitation activity in megasonic cleaning systems
The occurrence of acoustic cavitation in the cleaning liquid is a crucial precondition for the performance of megasonic cleaning systems. Hence, a fundamental understanding of the impact of different parameters of the megasonic process on cavitation activity is necessary. A setup capable of synchronously measuring sonoluminescence and acoustic emission originating from acoustically active bubbles is presented. The system also includes a high-speed-stroboscopic Schlieren imaging system to directly visualize the influence of cavitation activity on the Schlieren contrast and resolvable bubbles. This allows a thorough characterization of the mutual interaction of cavitation bubbles with the sound field and with each other. Results obtained during continuous sonication of argon-saturated water at various nominal power densities indicate that acoustic cavitation occurs in a cyclic manner, during which periods of stable and inertial cavitation activity alternate. The occurrence of higher and ultraharmonics in the acoustic emission spectra is characteristic for the stable cavitation state. The inertial cavitation state is characterized by a strong attenuation of the sound field, the explosive growth of bubbles and the occurrence of broadband components in the acoustic spectra. Both states can only be sustained at sufficiently high intensities of the sound field. At lower intensities, their occurrences are limited to short, random bursts. Cleaning activity can be linked to the cavitation activity through the measurement of particle removal on standard 200 mm silicon wafers. It is found that the particle removal efficiency is reduced, when a continuous state of cavitation activity ceases to exist.status: publishe
The Importance of Control over Bubble Size Distribution in Pulsed Megasonic Cleaning
The presence of acoustic cavitation in the cleaning liquid is a crucial precondition for cleaning action. One can achieve enhanced cleaning by periodically switching the ultrasonic agitation on and off rather than sonicating the liquid in a continuous fashion. The physical effects leading to that improvement are investigated experimentally with a dedicated setup and correlated to cleaning results obtained in an experimental cleaning tank. With the first setup, sonoluminescence and cavitation noise are measured simultaneously while imaging the nucleation and the interaction of the bubbles with the sound field using Hi-Speed Stroboscopic Schlieren Imaging. In this way it is possible to identify the role of streamer bubbles and transient cavitation. Furthermore, the attenuation of the sound field due to the highly efficient bubble induced acoustic scattering and the growth of bubbles due to coalescence is investigated. The results give an idea of the stability of the bubble size distribution during and after the nucleation process. The measurements obtained for pulsed megasonic agitation are compared to that obtained while sonicating the liquid continuously. They are further correlated to experimental data on particle removal efficiency for varying pulse duration, and corresponding cavitation noise measurements. Here, the latter proves to be a suitable and easy-to-do method to identify cleaning regimes beforehand. © 2012 American Institute of Physics.status: publishe
Impact of Plasma Pretreatment and Pore Size on the Sealing of Ultra-Low-k Dielectrics by Self-Assembled Monolayers
Self-assembled monolayers (SAMs) from an 11-cyanoundecyltrichlorosilane (CN-SAM) precursor were deposited on porous SiCOH low-k dielectrics with three different pore radii, namely, 1.7, 0.7, and lower than 0.5 nm. The low-k dielectrics were first pretreated with either O2 or He/H2 plasma in order to generate silanol groups on the hydrophobic pristine surface. Subsequently, the SAMs were chemically grafted to the silanol groups on the low-k surface. The SAMs distribution in the low-k films depends on the pore diameter: if the pore diameter is smaller than the size of the SAMs precursors, the SAM molecules are confined to the surface, while if the pore diameter exceeds the van der Waals radius of the SAMs precursor, the SAMs molecules reach deeper in the dielectric. In the latter case, when the pore sidewalls are made hydrophilic by the plasma treatment, the chemical grafting of the SAM precursors follows the profile of the generated silanol groups. The modification depth induced by the O2 plasma is governed by the diffusion of the oxygen radicals into the pores, which makes it the preferred choice for microporous materials. On the other hand, the vacuum ultraviolet (VUV) light plays a critical role, which makes it more suitable for hydrolyzing mesoporous materials. In addition to the density of the surface -OH groups, the nanoscale concave curvature associated with the pores also affects the molecular packing density and ordering with respect to the self-assembly behavior on flat surfaces. A simple model which correlates the low-k pore structure with the plasma hydrophilization mechanism and the SAMs distribution in the pores is presented.status: publishe