255 research outputs found

    Fractional Klein-Kramers equation for superdiffusive transport: normal versus anomalous time evolution in a differential L{\'e}vy walk model

    Full text link
    We introduce a fractional Klein-Kramers equation which describes sub-ballistic superdiffusion in phase space in the presence of a space-dependent external force field. This equation defines the differential L{\'e}vy walk model whose solution is shown to be non-negative. In the velocity coordinate, the probability density relaxes in Mittag-Leffler fashion towards the Maxwell distribution whereas in the space coordinate, no stationary solution exists and the temporal evolution of moments exhibits a competition between Brownian and anomalous contributions.Comment: 4 pages, REVTe

    Barrier breakdown in a multiple quantum well structure

    Get PDF
    We explore a regime of unipolar electronic transport in a multiple quantum well structure with very large current discontinuities - up to five orders of magnitude. Magneto-transport experiments reveal different transport regimes. Quantum well impact ionization shifts the structure from a resistive down state, where the current flows through inter-well quantum tunneling, to a highly conductive up state. In the latter regime, the current leaks through a barrier suddenly broken down because of an efficient ionization of the first quantum well.Comment: 16 pages, 5 figure

    Gaussian random waves in elastic media

    Full text link
    Similar to the Berry conjecture of quantum chaos we consider elastic analogue which incorporates longitudinal and transverse elastic displacements with corresponding wave vectors. Based on that we derive the correlation functions for amplitudes and intensities of elastic displacements. Comparison to numerics in a quarter Bunimovich stadium demonstrates excellent agreement.Comment: 4 pages, 4 figure

    Growth in densely populated Asia: implications for primary product exporters

    Get PDF
    Economic growth and integration in Asia is rapidly increasing the global economic importance of the region. To the extent that this growth continues and is strongest in natural resource-poor Asian economies, it will add to global demand for imports of primary products, to the benefit of (especially nearby) resource-abundant countries. How will global production, consumption and trade patterns change by 2030 in the course of such economic developments and structural changes? We address this question using the GTAP model and Version 8.1 of the 2007 GTAP database, together with supplementary data from a range of sources, to support projections of the global economy from 2007 to 2030 under various scenarios. Factor endowments and real gross domestic product are assumed to grow at exogenous rates, and trade-related policies are kept unchanged to generate a core baseline, which is compared with an alternative slower growth scenario. We also consider the impact of several policy changes aimed at increasing China's agricultural self-sufficiency relative to the 2030 baseline. Policy implications for countries of the Asia-Pacific region are drawn out in the final section

    Occurrence of periodic Lam\'e functions at bifurcations in chaotic Hamiltonian systems

    Get PDF
    We investigate cascades of isochronous pitchfork bifurcations of straight-line librating orbits in some two-dimensional Hamiltonian systems with mixed phase space. We show that the new bifurcated orbits, which are responsible for the onset of chaos, are given analytically by the periodic solutions of the Lam\'e equation as classified in 1940 by Ince. In Hamiltonians with C_2v{2v} symmetry, they occur alternatingly as Lam\'e functions of period 2K and 4K, respectively, where 4K is the period of the Jacobi elliptic function appearing in the Lam\'e equation. We also show that the two pairs of orbits created at period-doubling bifurcations of touch-and-go type are given by two different linear combinations of algebraic Lam\'e functions with period 8K.Comment: LaTeX2e, 22 pages, 14 figures. Version 3: final form of paper, accepted by J. Phys. A. Changes in Table 2; new reference [25]; name of bifurcations "touch-and-go" replaced by "island-chain

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio

    A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe
    • 

    corecore