1,133 research outputs found

    Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    Get PDF
    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the 3He/4He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.Comment: 4 pages, 3 figure

    Negative frequency tuning of a carbon nanotube nano-electromechanical resonator

    Get PDF
    A suspended, doubly clamped single wall carbon nanotube is characterized as driven nano-electromechanical resonator at cryogenic temperatures. Electronically, the carbon nanotube displays small bandgap behaviour with Coulomb blockade oscillations in electron conduction and transparent contacts in hole conduction. We observe the driven mechanical resonance in dc-transport, including multiple higher harmonic responses. The data shows a distinct negative frequency tuning at finite applied gate voltage, enabling us to electrostatically decrease the resonance frequency to 75% of its maximum value. This is consistently explained via electrostatic softening of the mechanical mode.Comment: 4 pages, 4 figures; submitted for the IWEPNM 2013 conference proceeding

    Quantum Metallicity on the High-Field Side of the Superconductor-Insulator Transition

    Get PDF
    We investigate ultrathin superconducting TiN films, which are very close to the localization threshold. Perpendicular magnetic field drives the films from the superconducting to an insulating state, with very high resistance. Further increase of the magnetic field leads to an exponential decay of the resistance towards a finite value. In the limit of low temperatures, the saturation value can be very accurately extrapolated to the universal quantum resistance h/e^2. Our analysis suggests that at high magnetic fields a new ground state, distinct from the normal metallic state occurring above the superconducting transition temperature, is formed. A comparison with other studies on different materials indicates that the quantum metallic phase following the magnetic-field-induced insulating phase is a generic property of systems close to the disorder-driven superconductor-insulator transition.Comment: 4 pages, 4 figures, published versio

    Aharonov-Bohm differential conductance modulation in defective metallic single-wall carbon nanotubes

    Full text link
    Using a perturbative approach, the effects of the energy gap induced by the Aharonov-Bohm (AB) flux on the transport properties of defective metallic single-walled carbon nanotubes (MSWCNTs) are investigated. The electronic waves scattered back and forth by a pair of impurities give rise to Fabry-Perot oscillations which constitutes a coherent backscattering interference pattern (CBSIP). It is shown that, the CBSIP is aperiodically modulated by applying a magnetic field parallel to the nanotube axis. In fact, the AB-flux brings this CBSIP under control by an additional phase shift. As a consequence, the extrema as well as zeros of the CBSIP are located at the irrational fractions of the quantity Φρ=Φ/Φ0\Phi_\rho={\Phi}/{\Phi_0}, where Φ\Phi is the flux piercing the nanotube cross section and Φ0=h/e\Phi_{0}=h/e is the magnetic quantum flux. Indeed, the spacing between two adjacent extrema in the magneto-differential conductance (MDC) profile is decreased with increasing the magnetic field. The faster and higher and slower and shorter variations is then obtained by metallic zigzag and armchair nanotubes, respectively. Such results propose that defective metallic nanotubes could be used as magneto-conductance switching devices based on the AB effect.Comment: 11 pages, 4 figure

    Phase transition curves for mesoscopic superconducting samples

    Full text link
    We compute the phase transition curves for mesoscopic superconductors. Special emphasis is given to the limiting shape of the curve when the magnetic flux is large. We derive an asymptotic formula for the ground state of the Schr\"odinger equation in the presence of large applied flux. The expansion is shown to be sensitive to the smoothness of the domain. The theoretical results are compared to recent experiments.Comment: 8 pages, 1 figur

    Altered DNA methylation in human placenta after (suspected) preterm labor

    Get PDF
    Aim: The aim of this study was to determine if alterations in DNA methylation in the human placenta would support suspected preterm labor as a pathologic insult associated with diminished placental health. Methods: We evaluated placental DNA methylation at seven loci differentially methylated in placental pathologies using targeted bisulfite sequencing, in placentas associated with preterm labor (term birth after suspected preterm labor [n = 15] and preterm birth [n = 15]), and controls (n = 15). Results: DNA methylation levels at the NCAM1 and PLAGL1 loci in placentas associated with preterm labor did differ significantly (p < 0.05) from controls. Discussion: Specific alterations in methylation patterns indicative of an unfavourable placental environment are associated with preterm labor per se and not restricted to preterm birth

    Mesoscopic Ferromagnet/Superconductor Junctions and the Proximity Effect

    Full text link
    We have measured the electrical transport of submicron ferromagnets (Ni) in contact with a mesoscopic superconductor (Al) for a range of interface resistances. In the geometry measured, the interface and the ferromagnet are measured separately. The ferromagnet itself shows no appreciable superconducting proximity effect, but the ferromagnet/superconductor interface exhibits strong temperature, field and current bias dependences. These effects are dependent on the local magnetic field distribution near the interface arising from the ferromagnet. We find that the temperature dependences may be fit to a modified version of the Blonder-Tinkham-Klapwijk theory for normal-superconductor transport.Comment: 4 eps fig

    Altered gene expression in human placenta after suspected preterm labour

    Get PDF
    Introduction Suspected preterm labour occurs in around 9% of pregnancies. However, almost two-thirds of women admitted for threatened preterm labour ultimately deliver at term and are considered risk-free for fetal development. Methods We examined placental and umbilical cord blood samples from preterm or term deliveries after threatened preterm labour as well as term deliveries without threatened preterm labour. We quantitatively analysed the mRNA expression of inflammatory markers (IL6, IFN?, and TNFa) and modulators of angiogenesis (FGF2, PGF, VEGFA, VEGFB, and VEGFR1). Results A total of 132 deliveries were analysed. Preterm delivery and term delivery after suspected preterm labour groups showed similar increases in TNFa expression compared with the term delivery control group in umbilical cord blood samples. Placental samples from preterm and term deliveries after suspected preterm labour exhibited significantly increased expression of TNFa and IL6 and decreased expression of IFN?. Suspected preterm labour was also associated with altered expression of angiogenic factors, although not all differences reached statistical significance. Discussion We found gene expression patterns indicative of inflammation in human placentas after suspected preterm labour regardless of whether the deliveries occurred preterm or at term. Similarly, a trend towards altered expression of angiogeneic factors was not limited to preterm birth. These findings suggest that the biological mechanisms underlying threatened preterm labour affect pregnancies independently of gestational age at birth

    Broken SU(4) symmetry in a Kondo-correlated carbon nanotube

    Full text link
    Understanding the interplay between many-body phenomena and non-equilibrium in systems with entangled spin and orbital degrees of freedom is a central objective in nano-electronics. We demonstrate that the combination of Coulomb interaction, spin-orbit coupling and valley mixing results in a particular selection of the inelastic virtual processes contributing to the Kondo resonance in carbon nanotubes at low temperatures. This effect is dictated by conjugation properties of the underlying carbon nanotube spectrum at zero and finite magnetic field. Our measurements on a clean carbon nanotube are complemented by calculations based on a new approach to the non-equilibrium Kondo problem which well reproduces the rich experimental observations in Kondo transport.Comment: 8 pages, 6 figures; appendix of 14 pages, 7 figure
    corecore