644 research outputs found
Heat Capacity in Magnetic and Electric Fields Near the Ferroelectric Transition in Tri-Glycine Sulfate
Specific-heat measurements are reported near the Curie temperature (~=
320 K) on tri-glycine sulfate. Measurements were made on crystals whose
surfaces were either non-grounded or short-circuited, and were carried out in
magnetic fields up to 9 T and electric fields up to 220 V/cm. In non-grounded
crystals we find that the shape of the specific-heat anomaly near is
thermally broadened. However, the anomaly changes to the characteristic sharp
-shape expected for a continuous transition with the application of
either a magnetic field or an electric field. In crystals whose surfaces were
short-circuited with gold, the characteristic -shape appeared in the
absence of an external field. This effect enabled a determination of the
critical exponents above and below , and may be understood on the basis
that the surface charge originating from the pyroelectric coefficient, ,
behaves as if shorted by external magnetic or electric fields.Comment: 4 Pages, 4 Figures. To Appear in Applied Physics Letters_ January
200
Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2
We show that Joule heating causes current-controlled negative differential
resistance (CC-NDR) in TiO2 by constructing an analytical model of the
voltage-current V(I) characteristic based on polaronic transport for Ohm's Law
and Newton's Law of Cooling, and fitting this model to experimental data. This
threshold switching is the 'soft breakdown' observed during electroforming of
TiO2 and other transition-metal-oxide based memristors, as well as a precursor
to 'ON' or 'SET' switching of unipolar memristors from their high to their low
resistance states. The shape of the V(I) curve is a sensitive indicator of the
nature of the polaronic conduction.Comment: 13 pages, 2 figure
Bichiral structure of feroelectric domain wall driven by flexoelectricity
The influence of flexoelectric coupling on the internal structure of neutral
domain walls in tetragonal phase of perovskite ferroelectrics is studied. The
effect is shown to lower the symmetry of 180-degree walls which are oblique
with respect to the cubic crystallographic axes, while {100} and {110} walls
stay "untouched". Being of the Ising type in the absence of the flexoelectric
interaction, the oblique domain walls acquire a new polarization component with
a structure qualitatively different from the classical Bloch-wall structure. In
contrast to the Bloch-type walls, where the polarization vector draws a helix
on passing from one domain to the other, in the flexoeffect-affected wall, the
polarization rotates in opposite directions on the two sides of the wall and
passes through zero in its center. Since the resulting polarization profile is
invariant upon inversion with respect to the wall center it does not brake the
wall symmetry in contrast to the classical Bloch-type walls. The flexoelectric
coupling lower the domain wall energy and gives rise to its additional
anisotropy that is comparable to that conditioned by the elastic anisotropy.
The atomic orderof- magnitude estimates shows that the new polarization
component P2 may be comparable with spontaneous polarization Ps, thus
suggesting that, in general, the flexoelectric coupling should be mandatory
included in domain wall simulations in ferroelectrics. Calculations performed
for barium titanate yields the maximal value of the P2, which is much smaller
than that of the spontaneous polarization. This smallness is attributed to an
anomalously small value of a component of the "strain-polarization"
elecrostictive tensor in this material
Universal Properties of Ferroelectric Domains
Basing on Ginzburg-Landau approach we generalize the Kittel theory and derive
the interpolation formula for the temperature evolution of a multi-domain
polarization profile P(x,z). We resolve the long-standing problem of the
near-surface polarization behavior in ferroelectric domains and demonstrate the
polarization vanishing instead of usually assumed fractal domain branching. We
propose an effective scaling approach to compare the properties of different
domain-containing ferroelectric plates and films.Comment: Phys. Rev. Lett. to be publishe
Domain Dynamics in Piezoresponse Force Microscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure
Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is
studied using the combination of local hysteresis loop acquisition with
simultaneous domain imaging. The analytical theory for PFS signal from domain
of arbitrary cross-section is developed and used for the analysis of
experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest
formation of oblate domain at early stage of the domain nucleation and growth,
consistent with efficient screening of depolarization field within the
material. The fine structure of the hysteresis loop is shown to be related to
the observed jumps in the domain geometry during domain wall propagation
(nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.Comment: 17 pages, 3 figures, 2 Appendices, to be submmited to Appl. Phys.
Let
Domain enhanced interlayer coupling in ferroelectric/paraelectric superlattices
We investigate the ferroelectric phase transition and domain formation in a
periodic superlattice consisting of alternate ferroelectric (FE) and
paraelectric (PE) layers of nanometric thickness. We find that the polarization
domains formed in the different FE layers can interact with each other via the
PE layers. By coupling the electrostatic equations with those obtained by
minimizing the Ginzburg-Landau functional we calculate the critical temperature
of transition Tc as a function of the FE/PE superlattice wavelength and
quantitatively explain the recent experimental observation of a thickness
dependence of the ferroelectric transition temperature in KTaO3/KNbO3
strained-layer superlattices.Comment: Latest version as was published in PR
Proper ferroelastic phase transitions in thin epitaxial films with symmetry-conserving and symmetry-breaking misfit strains
We study how the ferroelastic domain structure sets in in an epitaxial film
of a material with second order proper ferroelastic transition. The domain
structures considered are similar to either or
structures in perovskite ferroelectrics. If the "extrinsic" misfit
strain, not associated with the transition, does not break the symmetry of the
high-temperature phase, the phase transition in the film occurs at somewhat
lower temperature compared to the bulk. The loss of stability then occurs with
respect to a sinusoidal strain wave, which evolves into the domain structure
with practically the same geometry and approximately the same period. In the
presence of the symmetry-breaking component of the misfit strain ("extrinsic"
misfit) the character of the phase transition is qualitatively different. In
this case it is a {\em topological} transition between single-domain and
multi-domain states, which starts from a low density of the domain walls.Comment: 7 pages, 2 figures, REVTeX 3.
Magnetic Phase Transitions in the NdFe_3(BO_3)_4 multiferroic
Low temperature studies of the behavior of the sound velocity and attenuation
of acoustic modes have been performed on a single crystal NdFe_3(BO_3)_4.
Transitions of the magnetic subsystem to the antiferromagnetically ordered
state at T_N \approx 30.6 K have been revealed in the temperature behavior of
the elastic characteristics. The features in the temperature behavior of
elastic characteristics of the neodymium ferroborate and its behavior in the
external magnetic field, applied in the basic plane of the crystal, permit us
to suppose that the transition to an incommensurate spiral phase is realized in
the system. This phase transition behaves as the first order one. H-T phase
diagrams for the cases H \parallel a and H \parallel b have been constructed.
The phenomenological theory, which explains observed features, has been
developed
Electromagnon excitations in modulated multiferroics
The phenomenological theory of ferroelectricity in spiral magnets presented
in [M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006)] is generalized to describe
consistently states with both uniform and modulated-in-space ferroelectric
polarizations. A key point in this description is the symmetric part of the
magnetoelectric coupling since, although being irrelevant for the uniform
component, it plays an essential role for the non-uniform part of the
polarization. We illustrate this importance in generic examples of modulated
magnetic systems: longitudinal and transverse spin-density wave states and
planar cycloidal phase. We show that even in the cases with no uniform
ferroelectricity induced, polarization correlation functions follow to the soft
magnetic behavior of the system due to the magnetoelectric effect. Our results
can be easily generalized for more complicated types of magnetic ordering, and
the applications may concern various natural and artificial systems in
condensed matter physics (e.g., magnon properties could be extracted from
dynamic dielectric response measurements).Comment: 5 page
- …
