65 research outputs found

    Redox dynamics of sulphur with Ni/GDC anode during SOFC operation at mid- and low-range temperatures: An operando S K-edge XANES study

    Get PDF
    Sulphur poisoning of nickel-based solid oxide fuel cell (SOFC) anode catalysts is a well-documented shortcoming, but not yet fully understood. Here, a novel experiment is demonstrated to obtain spectroscopic information at operando conditions, in particular the molecular structure of sulphur species in the sulphur K-shell X-ray absorption near edge structure (XANES) region for a SOFC anode under realistic operando conditions, thus, with the flux of O2- from cathode to anode. Cooling from T = 550 degrees C stepwise down to 250 degrees C, 5 ppm H2S/H-2 reacting with Ni-gadolinium doped ceria (GDC) anode resulted in several sulphur species in different oxidation states (6+, 4+, 0, -2) and in amounts being at a minimum at high temperature. According to sulphur speciation analysis, the species could either relate to -SO42- or SO3 (g), -SO32- or SO2 (g), S-2 (g) or surface-adsorbed S atoms, and, Ni or Ce sulphides, respectively. The coexistence of different sulphur oxidation states as a function of temperature was analysed in the context of thermodynamic equilibrium calculations. Deviations between experimental results and calculations are most likely due to limitations in the speed of some intermediate oxidation steps as well as due to differences between stoichiometric CeO2 used in calculations and partially reduced Ce0.9Gd0.1O2-delta. (C) 2013 Elsevier B.V. All rights reserved

    Integrated management of ash from industrial and domestic combustion : a new sustainable approach for reducing greenhouse gas emissions from energy conversion

    Get PDF
    This work supports, for the first time, the integrated management of waste materials arising from industrial processes (fly ash from municipal solid waste incineration and coal fly ash), agriculture (rice husk ash), and domestic activities (ash from wood biomass burning in domestic stoves). The main novelty of the paper is the reuse of wood pellet ash, an underestimated environmental problem, by the application of a new technology (COSMOS-RICE) that already involves the reuse of fly ashes from industrial and agricultural origins. The reaction mechanism involves carbonation: this occurs at room temperature and promotes permanent carbon dioxide sequestration. The obtained samples were characterized using XRD and TGA (coupled with mass spectroscopy). This allowed quantification of the mass loss attributed to different calcium carbonate phases. In particular, samples stabilized using wood pellet ash show a weight loss, attributed to the decomposition of carbonates greater than 20%. In view of these results, it is possible to conclude that there are several environmental benefits from wood pellet ash reuse in this way. In particular, using this technology, it is shown that for wood pellet biomass the carbon dioxide conversion can be considered negative

    Verification of the membrane reactor concept for the methanol synthesis

    No full text
    The experimentally observed rise in the single pass methanol production with CO2 and H-2 (T = 200 degreesC, P = 4.3 bar) by in situ product removal over a perm-selective Nafion (R) membrane is verified by model simulations. For this purpose, software was developed which addresses the two rivalling processes (synthesis and permeation) for given catalyst activity and permeation performance of the membrane. The program predicts the production rate of all the reactor gas components leaving the reactor by explicit integration of the gas component and (reactor and mantle) space specific differential rate equations along the symmetry axes of the tubular membrane reactor. The activity of the CO2-tolerant catalyst used was characterized independently by kinetic model analysis; the experimentally determined permeation performance of the membrane for the various reactant gas components by Arrhenius type temperature dependencies. The model confirmed the membrane reactor results satisfactorily well. It was estimated that with 10 mum thin membrane surfaces implemented in commercial methanol synthesis plants and operated under technically relevant conditions (T = 200 degreesC, P = 40 bar, GHSV = 5000 h(-1)), the single pass reactor yield improves by 40% and that the additional costs for the membrane material are two production months only. (C) 2001 Elsevier Science B.V. All rights reserved

    Synchrotron X-ray absorption of LaCoO3 perovskite

    No full text
    LaCoO3 perovskite was prepared at 700degreesC using citrate precursors. The product was then characterized with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The powder XRD pattern indicates rhomboliedral (R (3) over barc) or its monoclinic I2/a subgroup symmetry. The electronic configuration and the short-range atomic structure of the LaCoO3 perovskite at room temperature were investigated using synchrotron near-edge X-ray absorption spectroscopy (XANES) and extended X-ray absorption spectroscopy (EXAFS). From the XANES region of the XAS we conclude that Co(III) is at least partly in its intermediate- or high-spin state, which is in accordance with most of the published literature on LaCoO3 perovskite. The EXAFS region of the LaCoO3 perovskite spectrum, which up to now was almost not investigated, was simulated satisfactorily for the first two radial structure peaks in terms of the dominant scattering contributions generated with the FEFF8 code and the structural information available from crystallographic data. The best simulation results were obtained with I2/a symmetry. The obtained amplitude reduction factor, zero-energy shift and Debye-Waller factors are useful reference values for data analyses of similar compounds like partly substituted LaCoO3 perovskite, such as La1-xCaxCoO3 or La1-xSrxCoO3, which are materials of technical interest in catalyst and other applications. (C) 2003 Elsevier Inc. All rights reserved
    • …
    corecore