5 research outputs found

    Large-Diameter Trees Dominate Snag and Surface Biomass Following Reintroduced Fire

    Get PDF
    The reintroduction of fire to landscapes where it was once common is considered a priority to restore historical forest dynamics, including reducing tree density and decreasing levels of woody biomass on the forest floor. However, reintroducing fire causes tree mortality that can have unintended ecological outcomes related to woody biomass, with potential impacts to fuel accumulation, carbon sequestration, subsequent fire severity, and forest management. In this study, we examine the interplay between fire and carbon dynamics by asking how reintroduced fire impacts fuel accumulation, carbon sequestration, and subsequent fire severity potential. Beginning pre-fire, and continuing 6 years post-fire, we tracked all live, dead, and fallen trees ≥ 1 cm in diameter and mapped all pieces of deadwood (downed woody debris) originating from tree boles ≥ 10 cm diameter and ≥ 1 m in length in 25.6 ha of an Abies concolor/Pinus lambertiana forest in the central Sierra Nevada, California, USA. We also tracked surface fuels along 2240 m of planar transects pre-fire, immediately post-fire, and 6 years post-fire. Six years after moderate-severity fire, deadwood ≥ 10 cm diameter was 73 Mg ha−1, comprised of 32 Mg ha−1 that persisted through fire and 41 Mg ha−1 of newly fallen wood (compared to 72 Mg ha−1 pre-fire). Woody surface fuel loading was spatially heterogeneous, with mass varying almost four orders of magnitude at the scale of 20 m × 20 m quadrats (minimum, 0.1 Mg ha−1; mean, 73 Mg ha−1; maximum, 497 Mg ha−1). Wood from large-diameter trees (≥ 60 cm diameter) comprised 57% of surface fuel in 2019, but was 75% of snag biomass, indicating high contributions to current and future fuel loading. Reintroduction of fire does not consume all large-diameter fuel and generates high levels of surface fuels ≥ 10 cm diameter within 6 years. Repeated fires are needed to reduce surface fuel loading

    ramet-based demographic and trait data

    No full text
    File contains data for 2014 and 2015 that were used to parameterize the vital rate functions. Contains both demographic and trait data

    spatial location data for ramets of A. syriaca

    No full text
    File contains spatial location data along 1 m wide transects for 2014 and 2015 for Asclepias syriaca ramets

    number of seeds per pod for A. syriaca

    No full text
    File contains seed count data for individual pods on Asclepias syriaca ramets

    Data for Gridding

    No full text
    Background: Large-diameter trees have an outsized influence on aboveground forest dynamics, composition, and structure. Although their influence on aboveground processes is well studied, their role in shaping belowground fungal communities is largely unknown. We sought to test if (H1) fungal community spatial structure matched aboveground forest structure, (H2) fungal functional guilds exhibited differential associations to aboveground tree, snag, and deadwood, and (H3) that large-diameter trees and snags have a larger influence on fungal community richness than smaller-diameter trees. We used MiSeq sequencing of fungal communities collected from soils in a spatially intensive survey in a portion of Cedar Breaks National Monument, Utah, USA. We used random forest models, to explore the spatial structure of fungal communities as they relate to explicitly mapped trees and deadwood distributed across 1.15 ha of a 15.32 ha mapped subalpine forest. Results: We found 6,177 fungal amplicon sequence variants across 117 sequenced samples. Tree diameter, deadwood presence, and tree species identity explained more than twice as much variation (38.7% vs. 10.4%) for ectomycorrhizal composition and diversity than for the total or saprotrophic fungal communities. Species identity and distance to the nearest large-diameter tree (≥ 40.2 cm) were better predictors of fungal diversity than were the identity and distance to the nearest tree. Soil nutrients, topography, and tree species differentially influenced the composition and diversity of each fungal guild. Locally rare tree species had outsized influence on fungal community richness. Conclusions: These results highlight that fungal guilds are differentially associated with the location, size, and species of aboveground trees. Large-diameter trees are implicated as drivers of belowground fungal diversity, particularly for ectomycorrhizal fungi
    corecore