1,559 research outputs found
Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot
We study the relaxation of a single electron spin in a circular gate-tunbable
quantum dot in gapped graphene. Direct coupling of the electron spin to
out-of-plane phonons via the intrinsic spin-orbit coupling leads to a
relaxation time T_1 which is independent of the B-field at low fields. We also
find that Rashba spin-orbit induced admixture of opposite spin states in
combination with the emission of in-plane phonons provides various further
relaxation channels via deformation potential and bond-length change. In the
absence of valley mixing, spin relaxation takes place within each valley
separately and thus time-reversal symmetry is effectively broken, thus
inhibiting the van Vleck cancellation at B=0 known from GaAs quantum dots. Both
the absence of the van Vleck cancellation as well as the out-of-plane phonons
lead to a behavior of the spin relaxation rate at low magnetic fields which is
markedly different from the known results for GaAs. For low B-fields, we find
that the rate is constant in B and then crosses over to ~B^2 or ~B^4 at higher
fields.Comment: 5 pages, 2 figures, 1 tabl
Electron correlations and single-particle physics in the Integer Quantum Hall Effect
The compressibility of a two-dimensional electron system with spin in a
spatially correlated random potential and a quantizing magnetic field is
investigated. Electron-electron interaction is treated with the Hartree-Fock
method. Numerical results for the influences of interaction and disorder on the
compressibility as a function of the particle density and the strength of the
magnetic field are presented. Localization-delocalization transitions
associated with highly compressible region in the energy spectrum are found at
half-integer filling factors. Coulomb blockade effects are found near integer
fillings in the regions of low compressibility. Results are compared with
recent experiments.Comment: 4 pages, 2 figures, replaced with revised versio
Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator
We theoretically investigate the deflection-induced coupling of an electron
spin to vibrational motion due to spin-orbit coupling in suspended carbon
nanotube quantum dots. Our estimates indicate that, with current capabilities,
a quantum dot with an odd number of electrons can serve as a realization of the
Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime.
A quantized flexural mode of the suspended tube plays the role of the optical
mode and we identify two distinct two-level subspaces, at small and large
magnetic field, which can be used as qubits in this setup. The strong intrinsic
spin-mechanical coupling allows for detection, as well as manipulation of the
spin qubit, and may yield enhanced performance of nanotubes in sensing
applications.Comment: 5 pages, 3 figures + appendix; published versio
The Peierls substitution in an engineered lattice potential
Artificial gauge fields open new possibilities to realize quantum many-body
systems with ultracold atoms, by engineering Hamiltonians usually associated
with electronic systems. In the presence of a periodic potential, artificial
gauge fields may bring ultracold atoms closer to the quantum Hall regime. Here,
we describe a one-dimensional lattice derived purely from effective
Zeeman-shifts resulting from a combination of Raman coupling and radiofrequency
magnetic fields. In this lattice, the tunneling matrix element is generally
complex. We control both the amplitude and the phase of this tunneling
parameter, experimentally realizing the Peierls substitution for ultracold
neutral atoms.Comment: 6 pages, 5 figure
Spin exchange interaction with tunable range between graphene quantum dots
We study the spin exchange between two electrons localized in separate
quantum dots in graphene. The electronic states in the conduction band are
coupled indirectly by tunneling to a common continuum of delocalized states in
the valence band. As a model, we use a two-impurity Anderson Hamiltonian which
we subsequently transform into an effective spin Hamiltonian by way of a
two-stage Schrieffer-Wolff transformation. We then compare our result to that
from a Coqblin-Schrieffer approach as well as to fourth order perturbation
theory.Comment: 8 pages, 3 figure
Factors predictive of alcohol use during pregnancy in three rural states
BACKGROUND: A substance use screening instrument was used to determine factors predictive of drinking during pregnancy. Alcohol consumption during pregnancy can lead to negative birth outcomes. METHODS: The participants (n = 4,828) for the study were sampled from pregnant women attending prenatal clinics in Montana, South Dakota, and North Dakota. Clinic sites for the administration of the screening instrument were selected in each state, based on geographic and known population characteristics. Univariate and multivariate statistical procedures were used to determine factors predictive of drinking during pregnancy. RESULTS: Women who drank tended to: be single, be between 21–25 years old, have had fewer children, have had abortions, and be unemployed. Demographic factors that were protective of drinking when pregnant were married and full-time housewife status. Other variables associated with maternal alcohol use were: past sexual abuse, current or past physical abuse, tobacco use, other drug use, lived with substance users, and had mates who were substance users. Other contributing factors for alcohol use included: feeling sad, believing that drinking any amount of alcohol while pregnant was acceptable, had been in treatment, could use treatment now, and were able to hold four or more drinks. CONCLUSION: Because drinking rates were high and factors correlated with drinking are known, alcohol screening for this population is essential
Space-based geoengineering: challenges and requirements
The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures
- …