18 research outputs found

    Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster

    Get PDF
    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost

    Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells

    Get PDF
    The Transforming Growth Factor (TGF) Ī² signalling family includes morphogens, such as Nodal and Activin, with important functions in vertebrate development. The concentration of the morphogen is critical for fate decisions in the responding cells. Smad2 and Smad3 are effectors of the Nodal/Activin branch of TGFĪ² signalling: they are activated by receptors, enter the nucleus and directly transcribe target genes. However, there have been no studies correlating levels of Smad2/3 activation with expression patterns of endogenous target genes in a developmental context over time. We used mouse Embryonic Stem (ES) cells to create a system whereby levels of activated Smad2/3 can be manipulated by an inducible constitutively active receptor (Alk4*) and an inhibitor (SB-431542) that blocks specifically Smad2/3 activation. The transcriptional responses were analysed by microarrays at different time points during activation and repression. We identified several genes that follow faithfully and reproducibly the Smad2/3 activation profile. Twenty-seven of these were novel and expressed in the early embryo downstream of Smad2/3 signalling. As they responded to Smad2/3 activation in the absence of protein synthesis, they were considered direct. These immediate responsive genes included negative intracellular feedback factors, like SnoN and I-Smad7, which inhibit the transcriptional activity of Smad2/3. However, their activation did not lead to subsequent repression of target genes over time, suggesting that this type of feedback is inefficient in ES cells or it is counteracted by mechanisms such as ubiquitin-mediated degradation by Arkadia. Here we present an ES cell system along with a database containing the expression profile of thousands of genes downstream of Smad2/3 activation patterns, in the presence or absence of protein synthesis. Furthermore, we identify primary target genes that follow proportionately and with high sensitivity changes in Smad2/3 levels over 15ā€“30 hours. The above system and resource provide tools to study morphogen function in development

    Key role for ubiquitin protein modification in TGFĪ² signal transduction

    Get PDF
    The transforming growth factor Ī² (TGFĪ²) superfamily of signal transduction molecules plays crucial roles in the regulation of cell behavior. TGFĪ² regulates gene transcription through Smad proteins and signals via non-Smad pathways. The TGFĪ² pathway is strictly regulated, and perturbations lead to tumorigenesis. Several pathway components are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. Smurfs are well known negative regulators of TGFĪ², which function as E3 ligases recruited by adaptors such as I-Smads. TGFĪ² signaling can also be enhanced by E3 ligases, such as Arkadia, that target repressors for degradation. It is becoming clear that E3 ligases often target multiple pathways, thereby acting as mediators of signaling cross-talk. Regulation via ubiquitination involves a complex network of E3 ligases, adaptor proteins, and deubiquitinating enzymes (DUBs), the last-mentioned acting by removing ubiquitin from its targets. Interestingly, also non-degradative ubiquitin modifications are known to play important roles in TGFĪ² signaling. Ubiquitin modifications thus play a key role in TGFĪ² signal transduction, and in this review we provide an overview of known players, focusing on recent advances

    HER-2 overexpression differentially alters transforming growth factor-Ī² responses in luminal versus mesenchymal human breast cancer cells

    Get PDF
    INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-Ī²) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-Ī²1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-Ī² on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-Ī²1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-Ī² signaling pathway was assessed using TGF-Ī²1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-Ī²1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-Ī² in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-Ī² induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-Ī². In contrast, HER-2 and TGF-Ī² signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model

    Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription

    No full text
    Smads are intracellular transducers for TGF-Ī² superfamily ligands, but little is known about the mechanism by which complexes of receptor-phosphorylated Smad2 and Smad4 regulate transcription. Using an in vitro transcription system, we have discovered that, unlike most transcription factors that are sufficient to recruit the basal transcription machinery and therefore activate transcription on both naked DNA and chromatin templates, the Smads only activate transcription from chromatin templates. We demonstrate that Smad2-mediated transcription requires the histone acetyltransferase, p300. Smad2-recruited p300 exhibits an altered substrate specificity, specifically acetylating nucleosomal histone H3 at lysines 9 and 18, and these modifications are also detected on an endogenous Smad2-dependent promoter in a ligand-induced manner. Furthermore, we show that endogenous Smad2 interacts with the SWI/SNF ATPase, Brg1, in a TGF-Ī²-dependent manner, and demonstrate that Brg1 is recruited to Smad2-dependent promoters and is specifically required for TGF-Ī²-induced expression of endogenous Smad2 target genes. Our data indicate that the Smads define a new class of transcription factors that absolutely require chromatin to assemble the basal transcription machinery and activate transcription
    corecore