8,324 research outputs found

    Frequency-Tunable Josephson Junction Resonator for Quantum Computing

    Full text link
    We have fabricated and measured a high-Q Josephson junction resonator with a tunable resonance frequency. A dc magnetic flux allows the resonance frequency to be changed by over 10 %. Weak coupling to the environment allows a quality factor of ∼\thicksim7000 when on average less than one photon is stored in the resonator. At large photon numbers, the nonlinearity of the Josephson junction creates two stable oscillation states. This resonator can be used as a tool for investigating the quality of Josephson junctions in qubits below the single photon limit, and can be used as a microwave qubit readout at high photon numbers.Comment: 3 pages, 5 figure

    STS-1 operational flight profile. Volume 5: Descent, cycle 3

    Get PDF
    The trajectory data presented are to be used for orbiter systems and subsystems evalation, flight and mission control center software verification, flight techniques and timeline development, crew training, and evaluation of operational mission suitability. The entry profile is very similar to cycle 2, however, elevon and body flap temperature margins have increased and the elevon schedule was changed. The terminal area energy management (TAEM) profile was completely reshaped to conform with new angle of attack constraints and left hand turn around the heading alignment cylinder. Also, the entry/TAEM interface was adjusted to minimize guidance induced angle of attack transients across the interface. The approach and landing phase was reshaped for a 20 deg glideslope and reduced velocity at touchdown. The definition of the runway threshold was standardized for all landing sites. This results in a shift at Edwards Air Force Base in aim points and touchdown relative to the threshold of 1000 feet. The rollout remains essentially unchanged with the exception of the speedbrake, which is now deployed to 50 percent at touchdown

    Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    Get PDF
    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst

    Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter

    Full text link
    The origin of both the diffuse high-latitude MeV gamma-ray emission and the 511 keV line flux from the Galactic bulge are uncertain. Previous studies have invoked dark matter physics to independently explain these observations, though as yet none has been able to explain both of these emissions within the well-motivated framework of Weakly-Interacting Massive Particles (WIMPs). Here we use an unstable WIMP dark matter model to show that it is in fact possible to simultaneously reconcile both of these observations, and in the process show a remarkable coincidence: decaying dark matter with MeV mass splittings can explain both observations if positrons and photons are produced with similar branching fractions. We illustrate this idea with an unstable branon, which is a standard WIMP dark matter candidate appearing in brane world models with large extra dimensions. We show that because branons decay via three-body final states, they are additionally unconstrained by searches for Galactic MeV gamma-ray lines. As a result, such unstable long-lifetime dark matter particles provide novel and distinct signatures that can be tested by future observations of MeV gamma-rays.Comment: 19 pages, 4 figure

    On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of their Diffusion

    Full text link
    Recent transient absorption experiments on CdS nanorods suggest that photoexcited holes rapidly trap to the surface of these particles and then undergo diffusion along the rod surface. In this paper, we present a semiperiodic DFT model for the CdS nanocrystal surface, analyze it, and comment on the nature of both the hole-trap states and the mechanism by which the holes diffuse. Hole states near the top of the valence band form an energetic near continuum with the bulk, and localize to the non-bonding sp3^3 orbitals on surface sulfur atoms. After localization, the holes form nonadiabatic small polarons that move between the sulfur orbitals on the surface of the particle in a series of uncorrelated, incoherent, thermally-activated hops at room temperature. The surface-trapped holes are deeply in the weak-electronic coupling limit and, as a result, undergo slow diffusion.Comment: 4 figure

    Diffuse continuum gamma rays from the Galaxy

    Get PDF
    A new study of the diffuse Galactic gamma-ray continuum radiation is presented, using a cosmic-ray propagation model which includes nucleons, antiprotons, electrons, positrons, and synchrotron radiation. Our treatment of the inverse Compton (IC) scattering includes the effect of anisotropic scattering in the Galactic interstellar radiation field (ISRF) and a new evaluation of the ISRF itself. Models based on locally measured electron and nucleon spectra and synchrotron constraints are consistent with gamma-ray measurements in the 30-500 MeV range, but outside this range excesses are apparent. A harder nucleon spectrum is considered but fitting to gamma rays causes it to violate limits from positrons and antiprotons. A harder interstellar electron spectrum allows the gamma-ray spectrum to be fitted above 1 GeV as well, and this can be further improved when combined with a modified nucleon spectrum which still respects the limits imposed by antiprotons and positrons. A large electron/IC halo is proposed which reproduces well the high-latitude variation of gamma-ray emission. The halo contribution of Galactic emission to the high-latitude gamma-ray intensity is large, with implications for the study of the diffuse extragalactic component and signatures of dark matter. The constraints provided by the radio synchrotron spectral index do not allow all of the <30 MeV gamma-ray emission to be explained in terms of a steep electron spectrum unless this takes the form of a sharp upturn below 200 MeV. This leads us to prefer a source population as the origin of the excess low-energy gamma rays.Comment: Final version accepted for publication in The Astrophysical Journal (vol. 537, July 10, 2000 issue); Many Updates; 20 pages including 49 ps-figures, uses emulateapj.sty. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

    Full text link
    We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13" diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.Comment: 19 pages, Accepted for Publication in the Astrophysical Journal Supplemen

    Density Matrix Renormalization Group Study of the Spin 1/2 Heisenberg Ladder with Antiferromagnetic Legs and Ferromagnetic Rungs

    Full text link
    The ground state and low lying excitation of the spin 1/2 Heisenberg ladder with antiferromagnetic leg (JJ) and ferromagnetic rung (−λJ,λ>0-\lambda J, \lambda >0) interaction is studied by means of the density matrix renormalization group method. It is found that the state remains in the Haldane phase even for small λ∼0.02\lambda \sim 0.02 suggesting the continuous transition to the gapless phase at λ=0\lambda = 0. The critical behavior for small λ\lambda is studied by the finite size scaling analysis. The result is consistent with the recent field theoretical prediction.Comment: 11 pages, revtex, figures upon reques

    First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI

    Full text link
    We present the first results using the Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI, to observe solar X-ray emission not associated with active regions, sunspots or flares (the quiet Sun). Using a newly developed chopping technique (fan-beam modulation) during seven periods of offpointing between June 2005 to October 2006, we obtained upper limits over 3-200 keV for the quietest times when the GOES12 1-8A flux fell below 10−810^{-8} Wm−2^{-2}. These values are smaller than previous limits in the 17-120 keV range and extend them to both lower and higher energies. The limit in 3-6 keV is consistent with a coronal temperature ≤6\leq 6 MK. For quiet Sun periods when the GOES12 1-8A background flux was between 10−810^{-8} Wm−2^{-2} and 10−710^{-7} Wm−2^{-2}, the RHESSI 3-6 keV flux correlates to this as a power-law, with an index of 1.08±0.131.08 \pm 0.13. The power-law correlation for microflares has a steeper index of 1.29±0.061.29 \pm 0.06. We also discuss the possibility of observing quiet Sun X-rays due to solar axions and use the RHESSI quiet Sun limits to estimate the axion-to-photon coupling constant for two different axion emission scenarios.Comment: 4 pages, 3 figures, Accepted by ApJ letter
    • …
    corecore