83 research outputs found

    The HII Region KR 140: Spontaneous Formation of a High Mass Star

    Full text link
    We have used a multiwavelength data set from the Canadian Galactic Plane Survey (CGPS) to study the Galactic HII region KR 140, both on the scale of the nebula itself and in the context of the star forming activity in the nearby W3/W4/W5 complex of molecular clouds and HII regions. From both radio and infrared data we have found a covering factor of about 0.5 for KR 140 and we interpret the nebula as a bowl-shaped region viewed close to face on. Extinction measurements place the region on the near side of its parent molecular cloud. The nebula is kept ionized by one O8.5 V(e) star, VES 735, which is less than a few million years old. CO data show that VES 735 has disrupted much of the original molecular cloud for which the estimated mass and density are about 5000 MM_{\odot} and 100 cm3^{-3}, respectively. KR 140 is isolated from the nearest star forming activity, in W3. Our data suggest that KR 140 is an example of spontaneous (i.e., non-triggered) formation of, unusually, a high mass star.Comment: 46 pages; includes 15 figures; accepted by the Ap

    Group analysis of structure equations for stars in radiative and convective equilibrium

    Full text link
    It is proposed to use the Lie group theory of symmetries of differential equations to investigate the system of equations describing a static star in a radiative and convective equilibrium. It is shown that the action of an admissible group induces a certain algebraic structure in the set of all solutions, which can be used to find a family of new solutions. We have demonstrated that, in the most general case, the equations admit an infinite parameter group of quasi-homologous transformations. We have found invariants of the symmetries group which correspond to the fundamental relations describing a physical characteristic of the stars such as the Hertzsprung-Russell diagram or the mass-luminosity relation. In this way we can suggest that group invariants have not only purely mathematical sense, but their forms are closely associated with the basic empirical relations.Comment: LaTeX2e, 13page

    Empirically Constrained Color-Temperature Relations. II. uvby

    Full text link
    (Abriged) A new grid of theoretical color indices for the Stromgren uvby photometric system has been derived from MARCS model atmospheres and SSG synthetic spectra for cool dwarf and giant stars. At warmer temperatures this grid has been supplemented with the synthetic uvby colors from recent Kurucz atmospheric models without overshooting. Our transformations appear to reproduce the observed colors of extremely metal-poor turnoff and giant stars (i.e., [Fe/H]<-2). Due to a number of assumptions made in the synthetic color calculations, however, our color-temperature relations for cool stars fail to provide a suitable match to the uvby photometry of both cluster and field stars having [Fe/H]>-2. To overcome this problem, the theoretical indices at intermediate and high metallicities have been corrected using a set of color calibrations based on field stars having accurate IRFM temperature estimates and spectroscopic [Fe/H] values. Encouragingly, isochrones that employ the transformations derived in this study are able to reproduce the observed CMDs (involving u-v, v-b, and b-y colors) for a number of open and globular clusters (including M92, M67, the Hyades, and 47Tuc) rather well. Moreover, our interpretations of such data are very similar, if not identical, with those given by VandenBerg & Clem (2003, AJ, 126, 778) from a consideration of BV(RI)c observations for the same clusters. In the present investigation, we have also analyzed the observed Stromgren photometry for the classic Population II subdwarfs, compared our "final" (b-y)-Teff relationship with those derived empirically in a number of recent studies, and examined in some detail the dependence of the m1 index on [Fe/H].Comment: 70 pages, 26 figures. Accepted for publication in AJ (Feb 2004). Postscript version with high resolution figures and complete Table 3 available at http://astrowww.phys.uvic.ca/~jclem/uvb

    The Age-Metallicity Relation in the Thin Disk of the Galaxy

    Full text link
    HST trigonometric distances, photometric metallicities, isochronic ages from the second revised version of the Geneva--Copenhagen survey, and uniform spectroscopic Fe and Mg abundances from our master catalog are used to construct and analyze the age--metallicity and age-relative Mg abundance relations for stars of the thin disk. The influences of selection effects are discussed in detail. It is demonstrated that the radial migration of stars does not lead to appreciable distortions in the age dependence of the metallicity. During the first several billion years of the formation of the thin disk, the interstellar material in this disk was, on average, fairly rich in heavy elements ( ~-0.2) and poorly mixed. However, the metallicity dispersion continuously decreased with age, from \sigma_{[Fe/H]}~0.22 to ~0.13. All this time, the mean relative abundance of Mg was somewhat higher than the solar value (~0.1). Roughly four to five billion years ago, the mean metallicity began to systematically increase, while retaining the same dispersion; the mean relative Mg abundance began to decrease immediately following this. The number of stars in this subsystem increased sharply at the same time. These properties suggest that the star-formation rate was low in the initial stage of formation of the thin disk, but abruptly increased about four to five billion years ago.Comment: 16 page, 7 figures, accepted 2011, Astron. Rep., v.55, No.8, p.667-68
    corecore