25 research outputs found

    Deconstructing the Late Phase of Vimentin Assembly by Total Internal Reflection Fluorescence Microscopy (TIRFM)

    Get PDF
    Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments

    Towards a resolution of some outstanding issues in transitive research: an empirical test on middle childhood

    Get PDF
    Transitive Inference (deduce B > D from B > C and C > D) can help us to understand other areas of sociocognitive development. Across three experiments, learning, memory, and the validity of two transitive paradigms were investigated. In Experiment 1 (N = 121), 7-year-olds completed a three-term nontraining task or a five-term task requiring extensive-training. Performance was superior on the three-term task. Experiment 2 presented 5–10-year-olds with a new five-term task, increasing learning opportunities without lengthening training (N = 71). Inferences improved, suggesting children can learn five-term series rapidly. Regarding memory, the minor (CD) premise was the best predictor of BD-inferential performance in both task-types. However, tasks exhibited different profiles according to associations between the major (BC) premise and BD inference, correlations between the premises, and the role of age. Experiment 3 (N = 227) helped rule out the possible objection that the above findings simply stemmed from three-term tasks with real objects being easier to solve than computer-tasks. It also confirmed that, unlike for five-term task (Experiments 1 & 2), inferences on three-term tasks improve with age, whether the age range is wide (Experiment 3) or narrow (Experiment 2). I conclude that the tasks indexed different routes within a dual-process conception of transitive reasoning: The five-term tasks indexes Type 1 (associative) processing, and the three-term task indexes Type 2 (analytic) processing. As well as demonstrating that both tasks are perfectly valid, these findings open up opportunities to use transitive tasks for educability, to investigate the role of transitivity in other domains of reasoning, and potentially to benefit the lived experiences of persons with developmental issues

    The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling

    Get PDF
    The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc
    corecore