12,815 research outputs found

    The origin of planetary impactors in the inner solar system

    Full text link
    New insights into the history of the inner solar system are derived from the impact cratering record of the Moon, Mars, Venus and Mercury, and from the size distributions of asteroid populations. Old craters from a unique period of heavy bombardment that ended \sim3.8 billion years ago were made by asteroids that were dynamically ejected from the main asteroid belt, possibly due to the orbital migration of the giant planets. The impactors of the past \sim3.8 billion years have a size distribution quite different from the main belt asteroids, but very similar to the population of near-Earth asteroids.Comment: 12 pages (including 4 figures

    The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z3z\sim3

    Get PDF
    We present results of a deep spectroscopic survey designed to quantify the statistics of the escape of ionizing photons from star-forming galaxies at z~3. We measure the ratio of ionizing to non-ionizing UV flux density _obs, where f900 is the mean flux density evaluated over the range [880,910] A. We quantify the emergent ratio of ionizing to non-ionizing UV flux density by analyzing high-S/N composite spectra formed from sub-samples with common observed properties and numbers sufficient to reduce the statistical uncertainty in the modeled IGM+CGM correction to obtain precise values of _out, including a full-sample average _out=0.057±0.0060.057\pm0.006. We further show that _out increases monotonically with Lyα\alpha rest equivalent width, inducing an inverse correlation with UV luminosity as a by-product. We fit the composite spectra using stellar spectral synthesis together with models of the ISM in which a fraction f_c of the stellar continuum is covered by gas with column density N(HI). We show that the composite spectra simultaneously constrain the intrinsic properties of the stars (L900/L1500)_int along with f_c, N(HI), E(B-V), and fesc,absf_{esc,abs}, the absolute escape fraction of ionizing photons. We find a sample-averaged fesc,abs=0.09±0.01f_{esc,abs} =0.09\pm0.01, and that subsamples fall along a linear relation fesc,abs0.75[W(Lyα)/110A]\langle f_{esc,abs}\rangle \sim 0.75[W(Ly\alpha)/110 A]. We use the FUV luminosity function, the distribution function n[W(Lyα)]n[W(Ly\alpha)], and the relationship between W(Lyα)W(Ly\alpha) and _out to estimate the total ionizing emissivity of z3z\sim3 star-forming galaxies with Muv < -19.5: ϵLyC6×1024\epsilon_{LyC}\sim 6\times10^{24} ergs/s/Hz/Mpc3^3, exceeding the contribution of QSOs by a factor of 3\sim 3, and accounting for 50\sim50% of the total ϵLyC\epsilon_{LyC} at z3z\sim3 estimated using indirect methods.Comment: 45 pages, 31 figures, ApJ, in pres

    Hydrodynamical Models of Outflow Collimation in YSOs

    Full text link
    We explore the physics of time-dependent hydrodynamic collimation of jets from Young Stellar Objects (YSOs). Using parameters appropriate to YSOs we have carried out high resolution hydrodynamic simulations modeling the interaction of a central wind with an environment characterized by a moderate opening angle toroidal density distribution. The results show that the the wind/environment interaction produces strongly collimated supersonic jets. The jet is composed of shocked wind gas. Using analytical models of wind blown bubble evolution we show that the scenario studied here should be applicable to YSOs and can, in principle, initiate collimation on the correct scales (R ~ 100 AU). The simulations reveal a number of time-dependent non-linear features not anticipated in previous analytical studies including: a prolate wind shock; a chimney of cold swept-up ambient material dragged into the bubble cavity; a plug of dense material between the jet and bow shocks. We find that the collimation of the jet occurs through both de Laval nozzles and focusing of the wind via the prolate wind shock. Using an analytical model for shock focusing we demonstrate that a prolate wind shock can, by itself, produce highly collimated supersonic jets.Comment: Accepted by ApJ, 31 pages with 12 figures (3 JPEG's) now included, using aasms.sty, Also available in postscript via a gzipped tar file at ftp://s1.msi.umn.edu/pub/afrank/SFIC1/SFIC.tar.g

    Instabilities and Clumping in Type Ia Supernova Remnants

    Get PDF
    We present two-dimensional high-resolution hydrodynamical simulations in spherical polar coordinates of a Type Ia supernova interacting with a constant density interstellar medium. The ejecta are assumed to be freely expanding with an exponential density profile. The interaction gives rise to a double-shocked structure susceptible to hydrodynamic instabilities. The Rayleigh-Taylor instability initially grows, but the Kelvin-Helmholtz instability takes over, producing vortex rings. The nonlinear instability initially evolves toward longer wavelengths and eventually fades away when the reverse shock front is in the flatter part of the supernova density distribution. Based on observations of X-ray knots and the protrusion in the southeast outlin of Tycho's supernova remnant, we include clumping in the ejecta. The clump interaction with the reverse shock induces Rayleigh-Taylor and Kelvin-Helmholtz instabilities on the clump surface that facilitate fragmentation. In order to survive crushing and to have a bulging effect on the forward shock, the clump's initial density ratio to the surrounding ejecta must be at least 100 for the conditions in Tycho's remnant. The 56Ni bubble effect may be important for the development of clumpiness in the ejecta. The observed presence of an Fe clump would then require a non-radioactive origin for this Fe, possibly 54Fe. The large radial distance of the X-ray emitting Si and S ejecta from the remnant center indicates that they were initially in clumps.Comment: 27 pages, 4 postscript figures, 5 GIF figures submitted to Astrophysical Journa

    New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background

    Full text link
    Supernovae are rare nearby, but they are not rare in the Universe, and all past core-collapse supernovae contributed to the Diffuse Supernova Neutrino Background (DSNB), for which the near-term detection prospects are very good. The Super-Kamiokande limit on the DSNB electron {\it antineutrino} flux, ϕ(Eν>19.3MeV)<1.2\phi(E_\nu > 19.3 {\rm MeV}) < 1.2 cm2^{-2} s1^{-1}, is just above the range of recent theoretical predictions based on the measured star formation rate history. We show that the Sudbury Neutrino Observatory should be able to test the corresponding DSNB electron {\it neutrino} flux with a sensitivity as low as ϕ(22.5<Eν<32.5MeV)6\phi(22.5 < E_\nu < 32.5 {\rm MeV}) \simeq 6 cm2^{-2} s1^{-1}, improving the existing Mont Blanc limit by about three orders of magnitude. While conventional supernova models predict comparable electron neutrino and antineutrino fluxes, it is often considered that the first (and forward-directed) SN 1987A event in the Kamiokande-II detector should be attributed to electron-neutrino scattering with an electron, which would require a substantially enhanced electron neutrino flux. We show that with the required enhancements in either the burst or thermal phase νe\nu_e fluxes, the DSNB electron neutrino flux would generally be detectable in the Sudbury Neutrino Observatory. A direct experimental test could then resolve one of the enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a serious misunderstanding of supernova physics, or was simply an unlikely statistical fluctuation. Thus the electron neutrino sensitivity of the Sudbury Neutrino Observatory is an important complement to the electron antineutrino sensitivity of Super-Kamiokande in the quest to understand the DSNB.Comment: 10 pages, 3 figure

    Detection of Molecular Hydrogen Orbiting a "Naked" T Tauri Star

    Get PDF
    Astronomers have established that for a few million years newborn stars possess disks of orbiting gas and dust. Such disks, which are likely sites of planet formation, appear to disappear once these stars reach ages of 5-10 times 10^6 yr; yet, >= 10^7 yr is thought necessary for giant planet formation. If disks dissipate in less time than is needed for giant planet formation, such planets may be rare and those known around nearby stars would be anomalies. Herein, we report the discovery of H_2 gas orbiting a weak-lined T Tauri star heretofore presumed nearly devoid of circumstellar material. We estimate that a significant amount of H_2 persists in the gas phase, but only a tiny fraction of this mass emits in the near-infrared. We propose that this star possesses an evolved disk that has escaped detection thus far because much of the dust has coagulated into planetesimals. This discovery suggests that the theory that disks are largely absent around such stars should be reconsidered. The widespread presence of such disks would indicate that planetesimals can form quickly and giant planet formation can proceed to completion before the gas in circumstellar disks disperses.Comment: latex 12 pages, including 1 figur
    corecore