12,181 research outputs found
Self-Generated Magnetic Fields in Galactic Cooling Flows
Interstellar magnetic fields in elliptical galaxies are assumed to have their
origin in stellar fields that accompany normal mass loss from an evolving
population of old stars. The seed fields are amplified by interstellar
turbulence driven by stellar mass loss and supernova events. These disordered
fields are further amplified by time-dependent compression in the inward moving
galactic cooling flow and are expected to dominate near the galactic core.
Under favorable circumstances, fields similar in strength to those observed G can be generated solely from these natural
galactic processes. In general the interstellar field throughout elliptical
galaxies is determined by the outermost regions in the interstellar gas where
the turbulent dynamo process can occur. Because of the long hydrodynamic flow
times in galactic cooling flows, currently observed magnetic fields may result
from periods of intense turbulent field amplification that occurred in the
outer galaxy in the distant past. Particularly strong fields in ellipticals may
result from ancient galactic mergers or shear turbulence introduced at the
boundary between the interstellar gas and ambient cluster gas.Comment: 21 pages in AASTEX LaTeX with 2 figures; accepted by Astrophysical
Journa
A dust disk surrounding the young A star HR4796A
We report the codiscovery of the spatially-resolved dust disk of the
Vega-like star HR 4796A. Images of the thermal dust emission at m show an elongated structure approximately 200 AU in diameter surrounding
the central A0V star. The position angle of the disk, , is consistent to the position angle of the M companion star,
, suggesting that the disk-binary system is being seen nearly
along its orbital plane. The surface brightness distribution of the disk is
consistent with the presence of an inner disk hole of approximately 50 AU
radius, as was originally suggested by Jura et al. on the basis of the infrared
spectrum. HR 4796 is a unique system among the Vega-like or Pictoris
stars in that the M star companion (a weak-emission T Tauri star) shows that
the system is relatively young, Myr. The inner disk hole may
provide evidence for coagulation of dust into larger bodies on a timescale
similar to that suggested for planet formation in the solar system.Comment: 12 pages, 3 PostScript figures, accepted for publication in
Astrophysical Journal Letter
Improved flux limits for neutrinos with energies above 10 eV from observations with the Westerbork Synthesis Radio Telescope
Particle cascades initiated by ultra-high energy (UHE) neutrinos in the lunar
regolith will emit an electromagnetic pulse with a time duration of the order
of nano seconds through a process known as the Askaryan effect. It has been
shown that in an observing window around 150 MHz there is a maximum chance for
detecting this radiation with radio telescopes commonly used in astronomy. In
50 hours of observation time with the Westerbork Synthesis Radio Telescope
array we have set a new limit on the flux of neutrinos, summed over all
flavors, with energies in excess of eV.Comment: Submitted to Phys. Rev. Let
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
New Studies of the Pulsar Wind Nebula in the Supernova Remnant CTB 80
We investigated the kinematics of the pulsar wind nebula (PWN) associated
with PSR B1951+32 in the old supernova remnant CTB 80 using the Fabry-Perot
interferometer of the 6m Special Astrophysical Observatory telescope. In
addition to the previously known expansion of the system of bright filaments
with a velocity of 100-200km/s, we detected weak high-velocity features in the
H-alpha line at least up to velocities of 400-450km/s. We analyzed the
morphology of the PWN in the H-alpha, [SII], and [OIII] lines using HST data
and discuss its nature. The shape of the central filamentary shell, which is
determined by the emission in the [OIII] line and in the radio continuum, is
shown to be consistent with the bow-shock model for a significant (about 60
degrees) inclination of the pulsar's velocity vector to the plane of the sky.
In this case, the space velocity of the pulsar is twice higher than its
tangential velocity, i.e., it reaches ~500 km/s, and PSR B1951+32 is the first
pulsar whose line-of-sight velocity (of about 400 km/s) has been estimated from
the PWN observations. The shell-like H-alpha-structures outside the bow shock
front in the east and the west may be associated with both the pulsar's jets
and the pulsar-wind breakthrough due to the layered structure of the extended
CTB 80 shell.Comment: to appear in Astronomy Letters, 12 pages, 6 postscript figures, two
in colour; for a version with high resolution figures see
http://www.sao.ru/hq/grb/team/vkom/CTB80_fine.pd
A Faraday Rotation Search for Magnetic Fields in Large Scale Structure
Faraday rotation of radio source polarization provides a measure of the
integrated magnetic field along the observational lines of sight. We compare a
new, large sample of Faraday rotation measures (RMs) of polarized extragalactic
sources with galaxy counts in Hercules and Perseus-Pisces, two nearby
superclusters. We find that the average of RMs in these two supercluster areas
are larger than in control areas in the same galactic latitude range. This is
the first RM detection of magnetic fields that pervade a supercluster volume,
in which case the fields are at least partially coherent over several
megaparsecs. Even the most conservative interpretation of our observations,
according to which Milky Way RM variations mimic the background supercluster
galaxy overdensities, puts constraints on the IGM magneto-ionic ``strength'' in
these two superclusters. We obtain an approximate typical upper limit on the
field strength of about 0.3 microGauss l/(500 kpc), when we combine our RM data
with fiducial estimates of electron density from the environments of giant
radio galaxies, and of the warm-hot intergalactic medium (WHIM).Comment: 8 pages, 3 figures, 1 table, to appear in the Astrophysical Journa
Smc5/6: a link between DNA repair and unidirectional replication?
Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity
Near-Infrared Classification Spectroscopy: H-band Spectra of Fundamental MK Standards
We present a catalogue of H-band spectra for 85 stars of approximately solar
abundance observed at a resolving power of 3000 with the KPNO Mayall 4m FTS.
The atlas covers spectral types O7-M5 and luminosity classes I-V as defined on
the MK system. We identify both atomic and molecular indices and line-ratios
which are temperature and luminosity sensitive allowing spectral classification
to be carried out in the H-band. The line ratios permit spectral classification
in the presence of continuum excess emission, which is commonly found in
pre-main sequence and evolved stars. We demonstrate that with spectra of R =
1000 obtained at SNR > 50 it is possible to derive spectral types within +- 2
subclasses for late-type stars. These data are available electronically through
the Astronomical Data Center in addition to being served on the World-Wide-Web.Comment: To appear in the November 20, 1998 issue of ApJ (Volume 508, #1
Discovery of the peculiar supernova 1998bw in the error box of GRB980425
The discovery of X-ray, optical and radio afterglows of gamma-ray bursts
(GRBs) and the measurements of the distances to some of them have established
that these events come from Gpc distances and are the most powerful photon
emitters known in the Universe, with peak luminosities up to 10^52 erg/s. We
here report the discovery of an optical transient, in the BeppoSAX Wide Field
Camera error box of GRB980425, which occurred within about a day of the
gamma-ray burst. Its optical light curve, spectrum and location in a spiral arm
of the galaxy ESO 184-G82, at a redshift z = 0.0085, show that the transient is
a very luminous type Ic supernova, SN1998bw. The peculiar nature of SN1998bw is
emphasized by its extraordinary radio properties which require that the radio
emitter expand at relativistical speed. Since SN1998bw is very different from
all previously observed afterglows of GRBs, our discovery raises the
possibility that very different mechanisms may give rise to GRBs, which differ
little in their gamma-ray properties.Comment: Under press embargo at Nature (submitted June 10, 1998
- âŠ