94 research outputs found

    Cancellation of atmospheric turbulence effects in entangled two-photon beams

    Full text link
    Turbulent airflow in the atmosphere and the resulting random fluctuations in its refractive index have long been known as a major cause of image deterioration in astronomical imaging and figures among the obstacles for reliable optical communication when information is encoded in the spatial profile of a laser beam. Here we show that using correlation imaging and a suitably prepared source of photon pairs, the most severe of the disturbances inflicted on the beam by turbulence can be cancelled out. Other than a two-photon light source, only linear passive optical elements are needed and, as opposed to adaptive optics techniques, our scheme does not rely on active wavefront correction.Comment: 5 pages, 3 figure

    Photon Distribution Function for Long-Distance Propagation of Partially Coherent Beams through the Turbulent Atmosphere

    Get PDF
    The photon density operator function is used to calculate light beam propagation through turbulent atmosphere. A kinetic equation for the photon distribution function is derived and solved using the method of characteristics. Optical wave correlations are described in terms of photon trajectories that depend on fluctuations of the refractive index. It is shown that both linear and quadratic disturbances produce sizable effects for long-distance propagation. The quadratic terms are shown to suppress the correlation of waves with different wave vectors. We examine the intensity fluctuations of partially coherent beams (beams whose initial spatial coherence is partially destroyed). Our calculations show that it is possible to significantly reduce the intensity fluctuations by using a partially coherent beam. The physical mechanism responsible for this pronounced reduction is similar to that of the Hanbury-Braun, Twiss effect.Comment: 28 pages, 4 figure

    Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves

    Get PDF
    Two-frequency Wigner distribution is introduced to capture the asymptotic behavior of the space-frequency correlation of paraxial waves in the radiative transfer limits. The scaling limits give rises to deterministic transport-like equations. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The solutions to these equations have a probabilistic representation which can be simulated by Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte

    Genetic Correlations of Fatty Acid Concentrations with Carcass Traits in Angus-Sired Beef Cattle

    Get PDF
    Fatty acid composition of beef is heritable in grain-fed calves. To select for beef that is more healthful, it is important to know the genetic correlations of specific fatty acid concentrations with carcass traits that have been under selection for several years. The most relevant fatty acids in beef for selection would be myristic acid, because of its impact on healthfulness, and oleic acid, because of its amount in beef. Myristic acid has favorable genetic correlations with hot carcass weight, 12-13th rib subcutaneous fat thickness, and Warner-Bratzler shear force (-0.23, 0.27, and 0.31, respectively). Additionally, the genetic correlation of oleic acid with marbling is very strong and favorable (0.83). Unfortunately, myristic acid has a moderate antagonistic genetic correlation to marbling (0.31). In addition, oleic acid has weak to moderate antagonistic genetic correlations with hot carcass weight, 12-13th rib subcutaneous fat thickness, percentage kidney, pelvic, and heart fat, and Warner-Bratzler shear force (-0.14, 0.18, 0.36, and 0.12, respectively). Information about the genetic correlations of traditional carcass traits and fatty acid concentrations will enable us to create a selection scheme that will create more healthful beef that meets the other carcass characteristics desired by the consumer

    On time reversal mirrors

    Full text link
    The concept of time reversal (TR) of scalar wave is reexamined from basic principles. Five different time reversal mirrors (TRM) are introduced and their relations are analyzed. For the boundary behavior, it is shown that for paraxial wave only the monopole TR scheme satisfies the exact boundary condition while for spherical wave only one of the mixed mode TR scheme, after multiplication by two, satisfies the exact boundary condition. The asymptotic analysis of the near-field focusing property is presented. It is shown that to have a subwavelength focal spot the TRM should involve dipole fields. The monopole TR is extremely ineffective to focus below wavelength as the focal spot size decreases logarithmically with the distance between the source and TRM. Contrary to the matched field processing and the phase processor, both of which resemble TR, TR in a weak- or non-scattering medium is usually biased in the longitudinal direction, especially when TR is carried out on a {\em single} plane with a {finite} aperture. This is true for all five TR schemes. On the other hand, the TR focal spot has been shown repeatedly in the literature, both theoretically and experimentally, to be centered at the source point when the medium is multiply scattering. A reconciliation of the two seemingly conflicting results is found in the random fluctuations in the intensity of the Green function for a multiply scattering medium and the notion of scattering-enlarged effective aperture

    Functional Anatomy of the Female Pelvic Floor

    Full text link
    The anatomic structures in the female that prevent incontinence and genital organ prolapse on increases in abdominal pressure during daily activities include sphincteric and supportive systems. In the urethra, the action of the vesical neck and urethral sphincteric mechanisms maintains urethral closure pressure above bladder pressure. Decreases in the number of striated muscle fibers of the sphincter occur with age and parity. A supportive hammock under the urethra and vesical neck provides a firm backstop against which the urethra is compressed during increases in abdominal pressure to maintain urethral closure pressures above the rapidly increasing bladder pressure. This supporting layer consists of the anterior vaginal wall and the connective tissue that attaches it to the pelvic bones through the pubovaginal portion of the levator ani muscle, and the uterosacral and cardinal ligaments comprising the tendinous arch of the pelvic fascia. At rest the levator ani maintains closure of the urogenital hiatus. They are additionally recruited to maintain hiatal closure in the face of inertial loads related to visceral accelerations as well as abdominal pressurization in daily activities involving recruitment of the abdominal wall musculature and diaphragm. Vaginal birth is associated with an increased risk of levator ani defects, as well as genital organ prolapse and urinary incontinence. Computer models indicate that vaginal birth places the levator ani under tissue stretch ratios of up to 3.3 and the pudendal nerve under strains of up to 33%, respectively. Research is needed to better identify the pathomechanics of these conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72597/1/annals.1389.034.pd
    • …
    corecore