30 research outputs found

    The Haemonchus contortus kinome - a resource for fundamental molecular investigations and drug discovery

    Get PDF
    Background: Protein kinases regulate a plethora of essential signalling and other biological pathways in all eukaryotic organisms, but very little is known about them in most parasitic nematodes. Methods: Here, we defined, for the first time, the entire complement of protein kinases (kinome) encoded in the barber’s pole worm (Haemonchus contortus) through an integrated analysis of transcriptomic and genomic datasets using an advanced bioinformatic workflow. Results: We identified, curated and classified 432 kinases representing ten groups, 103 distinct families and 98 subfamilies. A comparison of the kinomes of H. contortus and Caenorhabditis elegans (a related, free-living nematode) revealed considerable variation in the numbers of casein kinases, tyrosine kinases and Ca^(2+) /calmodulin-dependent protein kinases, which likely relate to differences in biology, habitat and life cycle between these worms. Moreover, a suite of kinase genes was selectively transcribed in particular developmental stages of H. contortus, indicating central roles in developmental and reproductive processes. In addition, using a ranking system, drug targets (n = 13) and associated small-molecule effectors (n = 1517) were inferred. Conclusions: The H. contortus kinome will provide a useful resource for fundamental investigations of kinases and signalling pathways in this nematode, and should assist future anthelmintic discovery efforts; this is particularly important, given current drug resistance problems in parasitic nematodes

    Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets

    Get PDF
    The blood fluke Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease (NTD) that affects more than 110 million people. Treating this disease by targeted or mass administration with a single chemical, praziquantel, carries the risk that drug resistance will develop in this pathogen. Therefore, there is an imperative to search for new drug targets in S. haematobium and other schistosomes. In this regard, protein kinases have potential, given their essential roles in biological processes and as targets for drugs already approved by the US Food and Drug Administration (FDA) for use in humans. In this context, we defined here the kinome of S. haematobium using a refined bioinformatic pipeline. We classified, curated and annotated predicted kinases, and assessed the developmental transcription profiles of kinase genes. Then, we prioritised a panel of kinases as potential drug targets and inferred chemicals that bind to them using an integrated bioinformatic pipeline. Most kinases of S. haematobium are very similar to those of its congener, S. mansoni, offering the prospect of designing chemicals that kill both species. Overall, this study provides a global insight into the kinome of S. haematobium and should assist the repurposing or discovery of drugs against schistosomiasis

    Reconstruction of the insulin-like signalling pathway of Haemonchus contortus

    Get PDF
    Background: In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is related to the free-living nematode Caenorhabditis elegans. Methods: We curated full-length open-reading frames from assembled transcripts, defined the complement of genes that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key developmental stages of H. contortus. Results: The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C. elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary in their functional domains, indicating distinct roles from their homologs in C. elegans. Conclusions: This study paves the way for the further characterization of key signalling pathways in other socioeconomically important parasites and should help understand the complex mechanisms involved in developmental processes

    Flatworms have lost the right open reading frame kinase 3 gene during evolution

    Get PDF
    All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins

    Analyses of Compact Trichinella Kinomes Reveal a MOS-like Protein Kinase with a Unique N-terminal Domain

    Get PDF
    Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation

    CAP protein superfamily members in Toxocara canis

    Get PDF
    Background: Proteins of the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are recognized or proposed to play roles in parasite development and reproduction, and in modulating host immune attack and infection processes. However, little is known about these proteins for most parasites. Results: In the present study, we explored CAP proteins of Toxocara canis, a socioeconomically important zoonotic roundworm. To do this, we mined and curated transcriptomic and genomic data, predicted and curated full-length protein sequences (n = 28), conducted analyses of these data and studied the transcription of respective genes in different developmental stages of T. canis. In addition, based on information available for Caenorhabditis elegans, we inferred that selected genes (including lon-1, vap-1, vap-2, scl-1, scl-8 and scl-11 orthologs) of T. canis and their interaction partners likely play central roles in this parasite’s development and/or reproduction via TGF-beta and/or insulin-like signaling pathways, or via host interactions. Conclusion: In conclusion, this study could provide a foundation to guide future studies of CAP proteins of T. canis and related parasites, and might assist in finding new interventions against diseases caused by these parasites

    Bulinus truncatus transcriptome – a resource to enable molecular studies of snail and schistosome biology

    Get PDF
    Despite advances in high-throughput sequencing and bioinformatics, molecular investigations of snail intermediate hosts that transmit parasitic trematodes are scant. Here, we report the first transcriptome for Bulinus truncatus – a key intermediate host of Schistosoma haematobium – a blood fluke that causes urogenital schistosomiasis in humans. We assembled this transcriptome from short- and long-read RNA-sequence data. From this transcriptome, we predicted 12,998 proteins, 58% of which had orthologs in Biomphalaria glabrata – an intermediate host of Schistosoma mansoni – a blood fluke that causes hepato-intestinal schistosomiasis. We predicted that select protein groups are involved in signal transduction, cell growth and death, the immune system, environmental adaptation and/or the excretory/secretory system, suggesting roles in immune responses, pathogen defence and/or parasite-host interactions. The transcriptome of Bu. truncatus provides a useful resource to underpin future molecular investigations of this and related snail species, and its interactions with pathogens including S. haematobium. The present resource should enable comparative investigations of other molluscan hosts of socioeconomically important parasites in the future

    Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium

    Get PDF
    Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium—called Bulinus truncatus—and explore protein groups inferred to play an integral role in the snail’s biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata—the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission

    Analyses of Compact Trichinella Kinomes Reveal a MOS-like Protein Kinase with a Unique N-terminal Domain

    Get PDF
    Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation

    Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation.

    Get PDF
    Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting \u3e 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover \u27new\u27 genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic \u27signatures\u27 that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis
    corecore