58 research outputs found

    Structural and magnetic properties of Mn3-xCdxTeO6 (x = 0, 1, 1.5 and 2)

    Full text link
    Mn3TeO6 exhibits a corundum-related A3TeO6 structure and a complex magnetic structure involving two magnetic orbits for the Mn atoms [*]. Mn3-xCdxTeO6 (x=0, 1, 1.5 and 2) ceramics were synthesized by solid state reaction and investigated using X-ray powder diffraction, electron microscopy, calorimetric and magnetic measurements. Cd2+ replaces Mn2+ cations without greatly affecting the structure of the compound. The Mn and Cd cations were found to be randomly distributed over the A-site. Magnetization measurements indicated that the samples order antiferromagnetically at low temperature with a transition temperature that decreases with increasing Cd doping. The nuclear and magnetic structure of one specially prepared 114Cd containing sample: Mn1.5(114Cd)1.5TeO6, was studied using neutron powder diffraction over the temperature range 2 to 295 K. Mn1.5(114Cd)1.5TeO6 was found to order in an incommensurate helical magnetic structure, very similar to that of Mn3TeO6 [*]. However, with a lower transition temperature and the extension of the ordered structure confined to order 240(10) {\AA}. [*] S. A. Ivanov et al. Mater. Res. Bull. 46 (2011) 1870.Comment: 20 pages, 8 figure

    STROBE-X: a probe-class mission for x-ray spectroscopy and timing on timescales from microseconds to years

    Get PDF
    We describe the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X), a probeclass mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over both a broad energy band (0.2–30 keV) and a wide range of timescales from microseconds to years. STROBE-X comprises two narrow-field instruments and a wide field monitor. The soft or low-energy band (0.2–12 keV) is covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid-state detectors with CCD-level (85–175 eV) energy resolution, 100 ns time resolution, and low background rates. This technology has been fully developed for NICER and will be scaled up to take advantage of the longer focal length of STROBE-X. The higher-energy band (2–30 keV) is covered by large-area, collimated silicon drift detectors that were developed for the European LOFT mission concept. Each instrument will provide an order of magnitude improvement in effective area over its predecessor (NICER in the soft band and RXTE in the hard band). Finally, STROBE-X offers a sensitive wide-field monitor (WFM), both to act as a trigger for pointed observations of X-ray transients and also to provide high duty-cycle, high time-resolution, and high spectral-resolution monitoring of the variable X-ray sky. The WFM will boast approximately 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multi-messenger investigations with a large instantaneous field of view. This mission concept will be presented to the 2020 Decadal Survey for consideration

    Philosophy of Science and The Replicability Crisis

    Get PDF
    Replicability is widely taken to ground the epistemic authority of science. However, in recent years, important published findings in the social, behavioral, and biomedical sciences have failed to replicate, suggesting that these fields are facing a “replicability crisis.” For philosophers, the crisis should not be taken as bad news but as an opportunity to do work on several fronts, including conceptual analysis, history and philosophy of science, research ethics, and social epistemology. This article introduces philosophers to these discussions. First, I discuss precedents and evidence for the crisis. Second, I discuss methodological, statistical, and social-structural factors that have contributed to the crisis. Third, I focus on the philosophical issues raised by the crisis. Finally, I discuss proposed solutions and highlight the gaps that philosophers could focus on
    corecore