121 research outputs found

    Numerical analysis of Pickering emulsion stability: insights from ABMD simulations

    Get PDF
    The issue of the stability of Pickering emulsions is tackled at a mesoscopic level using dissipative particle dynamics simulations within the Adiabatic Biased Molecular Dynamics framework. We consider the early stage of the coalescence process between two spherical water droplets in decane solvent. The droplets are stabilized by Janus nanoparticles of different shapes (spherical and ellipsoidal) with different three-phase contact angles. Given a sufficiently dense layer of particles on the droplets, we show that the stabilization mechanism strongly depends on the collision speed. This is consistent with a coalescence mechanism governed by the rheology of the interfacial region. When the system is forced to coalesce sufficiently slowly, we investigate at a mesoscopic level how the ability of the nanoparticles to stabilize Pickering emulsions is discriminated by nanoparticle mobility and the associated caging effect. These properties are both related to the interparticle interaction and the hydrodynamic resistance in the liquid film between the approaching interfaces.Comment: 15 pages (12 pages and Supplemental Information), 11 figures, to be published in Faraday Discussions (Royal Society of Chemistry

    An engineering model of the COVID-19 trajectory to predict the success of isolation initiatives

    Get PDF
    Much media and societal attention is today focused on how to best control the spread of coronavirus (COVID-19). Every day brings us new data, and policy makers are implementing different strategies in different countries to manage the impact of COVID-19. To respond to the first 'wave' of infection, several countries, including the UK, opted for isolation/lockdown initiatives, with different degrees of rigour. Data showed that these initiatives have yielded the expected results in terms of containing the rapid trajectory of the virus. When this article was first prepared (April 2020), the affected societies were wondering when the isolation/lockdown initiatives should be lifted. While detailed epidemiological, economic as well as social studies would be required to answer this question completely, here we employ a simple engineering model. Albeit simple, the model is capable of reproducing the main features of the data reported in the literature concerning the COVID-19 trajectory in different countries, including the increase in cases in countries following the initially successful isolation/lockdown initiatives. Keeping in mind the simplicity of the model, we attempt to draw some conclusions, which seem to suggest that a decrease in the number of infected individuals after the initiation of isolation/lockdown initiatives does not necessarily guarantee that the virus trajectory is under control. Within the limit of this model, it would seem that rigid isolation/lockdown initiatives for the medium term would lead to achieving the desired control over the spread of the virus. This observation seems consistent with the 2020 summer months, during which the COVID-19 trajectory seemed to be almost under control across most European countries. Consistent with the results from our simple model, winter 2020 data show that the virus trajectory was again on the rise. Because the optimal solution will achieve control over the spread of the virus while minimising negative societal impacts due to isolation/lockdown, which include but are not limited to economic and mental health aspects, the engineering model presented here is not sufficient to provide the desired answer. However, the model seems to suggest that to keep the COVID-19 trajectory under control, a series of short-to-medium term isolation measures should be put in place until one or more of the following scenarios is achieved: a cure has been developed and has become accessible to the population at large; a vaccine has been developed, tested and distributed to large portions of the population; a sufficiently large portion of the population has developed resistance to the COVID-19 virus; or the virus itself has become less aggressive. It is somewhat remarkable that an engineering model, despite all its approximations, provides suggestions consistent with advanced epidemiological models developed by several experts in the field. The model proposed here is however not expected to be able to capture the emergence of variants of the virus, which seem to be responsible for significant outbreaks, notably in India, in the spring of 2021, it cannot describe the effectiveness of vaccine strategies, as it does not differentiate among different age groups within the population, nor does it allow us to consider the duration of the immunity achieved after infection or vaccination

    Upcoming Transformations in Integrated Energy/Chemicals Sectors: Some Challenges and Several Opportunities

    Get PDF
    The sociopolitical events over the past few years led to transformative changes in both the energy and chemical sectors. One of the most evident consequences of these events is the significant focus on sustainability. In fact, rather than an engaging discussion within elite social circles, the search for sustainability is now one of the hard requirements investors impose on companies. The concept of sustainability itself has developed since its inception, and now it encompasses environmental as well as socioeconomic aspects. The major players in the energy and chemical sectors seem to embrace these changes and the related challenges; in most cases, tangible ambitious goals have been proposed. For example, bp aims “to become a net zero company by 2050 or sooner, and to help the world get to net zero”. Although tragic events such as the war in Ukraine directly affect global supply chains, leading to some reconsiderations in medium-term industrial and political strategies, trends and public demands seem determined to pursue ambitious sustainable goals, as tangible as the European Union’s “Fit for 55” climate package, approved on May 12, 2022, which effectively bans internal combustion engines for new passenger cars and light commercial vehicles from 2035. These trends will likely lead to profound changes in both the chemical and energy sectors. While some predictions may miss the target, speculating about upcoming challenges and opportunities could help us prepare for the future. This is the purpose of this brief Perspective

    Understanding the Aggregation of Model Island and Archipelago Asphaltene Molecules near Kaolinite Surfaces using Molecular Dynamics

    Get PDF
    The solubility of asphaltenes in hydrocarbons changes with pressure, composition, and temperature, leading to precipitation and deposition, thereby causing one of the crucial problems that negatively affects oil production, transportation, and processing. Because, in some circumstances, it might be advantageous to promote asphaltene agglomeration into small colloidal particles, molecular dynamics simulations were conducted here to understand the impacts of a chemical additive inspired by cyclohexane on the mechanism of aggregation of model island and archipelago asphaltene molecules in toluene. We compared the results in the presence and absence of a kaolinite surface at 300 and 400 K. Cluster size analyses, radial distribution functions, angles between asphaltenes, radius of gyration, and entropic and energetic calculations were used to provide insights on the behavior of these systems. The results show that the hypothetical additive inspired by cyclohexane promoted the aggregation of both asphaltenes. Structural differences were observed among the aggregates obtained in our simulations. These differences are attributed to the number of aromatic cores and side chains on the asphaltene molecules as well as to that of heteroatoms. For the island structure, aggregation in the bulk phase was less pronounced than that in the proximity of the kaolinite surface, whereas the opposite was observed for the archipelago structure. In both cases, the additive promoted stacking of asphaltenes, yielding more compact aggregates. The results provided insights into the complex nature of asphaltene aggregation, although computational approaches that can access longer time and larger size scales should be chosen for quantifying emergent meso- and macroscale properties of systems containing asphaltenes in larger numbers than those that can currently be sampled via atomistic simulations

    Advances of nanotechnologies for hydraulic fracturing of coal seam gas reservoirs: potential applications and some limitations in Australia

    Get PDF
    Some of the most promising potential applications of nanotechnology to hydraulic fracturing of coal seam gas (CSG) are reviewed with a focus on Australian CSG wells. Three propitious applications were identified: (1) Nanoparticle enhanced viscoelastic surfactants (VES) fracturing fluids to prevent fluid loss by up to 30%, made possible by the formation of pseudo-filter cakes and reducing the viscosity of the VES fluids. Besides, there is no requirement of clay control additives or biocides. (2) Nano-proppants to extend fracture networks and reduce proppant embedment by introducing them prior to the emplacement of larger proppants. Fly Ash nanoparticles can be particularly effective because of their high sphericity and mechanical strength. (3) Nanoparticle-coated proppants, to mitigate the migration of particle fines by restricting them close to their source by adsorption, with MgO being the most effective. The use of nanotechnology in hydraulic fracturing applications is currently hindered due to a discordant regulatory environment compounded by the cost of the nanoparticles themselves, as well as, a lack of field data to validate the technology under real downhole conditions. Although the necessary field tests are unlikely to be conducted for as long as abundant natural gas is available, exploratory studies could pave the way for future applications

    Hydration Structures on Îł-Alumina Surfaces With and Without Electrolytes Probed by Atomistic Molecular Dynamics Simulations

    Get PDF
    A wide range of systems, both engineered and natural, feature aqueous electrolyte solutions at interfaces. In this study, the structure and dynamics of water at the two prevalent crystallographic terminations of gamma-alumina, [110] and [100], and the influence of salts─sodium chloride, ammonium acetate, barium acetate, and barium nitrate on such properties─were investigated using equilibrium molecular dynamics simulations. The resulting interfacial phenomena were quantified from simulation trajectories via atomic density profiles, angle probability distributions, residence times, 2-D density distributions within the hydration layers, and hydrogen bond density profiles. Analysis and interpretation of the results are supported by simulation snapshots. Taken together, our results show stronger interaction and closer association of water with the [110] surface, compared to [100], while ion-induced disruption of interfacial water structure was more prevalent at the [100] surface. For the latter, a stronger association of cations is observed, namely sodium and ammonium, and ion adsorption appears determined by their size. The differences in surface-water interactions between the two terminations are linked to their respective surface features and distributions of surface groups, with atomistic-scale roughness of the [110] surface promoting closer association of interfacial water. The results highlight the fundamental role of surface characteristics in determining surface-water interactions, and the resulting effects on ion-surface and ion-water interactions. Since the two terminations of gamma-alumina considered represent interfaces of significance to numerous industrial applications, the results provide insights relevant for catalyst preparation and adsorption-based water treatment, among other applications

    Interactions between Îł-alumina surfaces in water and aqueous salt solutions

    Get PDF
    Particle agglomeration is relevant to numerous industrial applications and consumer products. The present work explores interactions between and agglomeration of gamma (Îł)-alumina nanoparticles in pure water and dilute aqueous salt solutions. To characterize surface- and salt-specific effects, potential of mean force (PMF) profiles between Îł-alumina surfaces ([110] and [100] facets) are extracted using classical molecular dynamics (MD) simulations. Supporting experiments are conducted using dynamic light scattering (DLS) to investigate agglomeration at the macroscale. The ion pairs considered are sodium chloride, ammonium acetate, barium nitrate, and barium acetate; sampling a broad range of the Hofmeister series. As particle surfaces approach contact, free-energy fluctuations of the PMF profiles reflect structural adjustments of the intervening aqueous phase. We extract values for the cohesive energy from the MD results, and parse the resultant effective pair interactions into van der Waals and electrostatic contributions. Molecular scale findings from simulations correlate with hydrodynamic radii of Îł-alumina nanoparticles, obtained from DLS experiments. The results highlight the applicability of molecular simulations to identify the origins of macroscale observables

    Wetting Properties of Clathrate Hydrates in the Presence of Polycyclic Aromatic Compounds: Evidence of Ion-Specific Effects

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) have attracted remarkable multidisciplinary attention due to their intriguing π–π stacking configurations, showing enormous opportunity for their use in a variety of advanced applications. To secure progress, detailed knowledge on PAHs’ interfacial properties is required. Employing molecular dynamics, we probe the wetting properties of brine droplets (KCl, NaCl, and CaCl2) on sII methane–ethane hydrate surfaces immersed in various oil solvents. Our simulations show synergistic effects due to the presence of PAHs compounded by ion-specific effects. Our analysis reveals phenomenological correlations between the wetting properties and a combination of the binding free-energy difference and entropy changes upon oil solvation for PAHs at oil/brine and oil/hydrate interfaces. The detailed thermodynamic analysis conducted upon the interactions between PAHs and various interfaces identifies molecular-level mechanisms responsible for wettability alterations, which could be applicable for advancing applications in optics, microfluidics, biotechnology, medicine, as well as hydrate management
    • …
    corecore