119 research outputs found

    Synthesis of 5-Hydroxyectoine from Ectoine: Crystal Structure of the Non-Heme Iron(II) and 2-Oxoglutarate-Dependent Dioxygenase EctD

    Get PDF
    As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD) is a member of the non-heme iron(II)-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe3+ at a resolution of 1.85 Å. Like other non-heme iron(II) and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded β-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family

    Fungal volatile organic compounds: emphasis on their plant growth-promoting

    Get PDF
    Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare

    Crystallographic Evidence of Drastic Conformational Changes in the Active Site of a Flavin-Dependent

    Get PDF
    The soil actinomycete Kutzneria sp. 744 produces a class of highly decorated hexadepsipeptides, which represent a new chemical scaffold that has both antimicrobial and antifungal properties. These natural products, known as kutznerides, are created via nonribosomal peptide synthesis using various derivatized amino acids. The piperazic acid moiety contained in the kutzneride scaffold, which is vital for its antibiotic activity, has been shown to derive from the hydroxylated product of l-ornithine, l-N5-hydroxyornithine. The production of this hydroxylated species is catalyzed by the action of an FAD- and NAD(P)H-dependent N-hydroxylase known as KtzI. We have been able to structurally characterize KtzI in several states along its catalytic trajectory, and by pairing these snapshots with the biochemical and structural data already available for this enzyme class, we propose a structurally based reaction mechanism that includes novel conformational changes of both the protein backbone and the flavin cofactor. Further, we were able to recapitulate these conformational changes in the protein crystal, displaying their chemical competence. Our series of structures, with corroborating biochemical and spectroscopic data collected by us and others, affords mechanistic insight into this relatively new class of flavin-dependent hydroxylases and adds another layer to the complexity of flavoenzymes.National Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473

    Farm living and allergic rhinitis from childhood to young adulthood - prospective results of the GABRIEL study.

    No full text
    BACKGROUND: Growing up on a farm is associated with a reduced prevalence of respiratory allergies in childhood. It is unknown whether this protective effect remains into adulthood. OBJECTIVES: We aimed to prospectively investigate the relationship between farm exposure and prevalence of allergic rhinitis and wheeze from childhood to early adulthood. METHODS: Participants from phase 2 of the GABRIEL (Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community) study living in southern Germany (aged 6-11 years at baseline; 20-25 at follow-up) were invited to complete a questionnaire on sociodemographic data, farm contact, respiratory symptoms, and potential confounders. Odds ratios (OR) with 95% confidence intervals (95% CI) were modelled using generalized estimating equations (GEE). RESULTS: Of the 2,276 phase 2 participants, 1,501 (66%) answered the follow-up questionnaire of which 1,333 could be included in the analyses. Living on a farm was associated with reduced prevalence of allergic rhinitis (persistent farm living OR 0.4; 95% CI 0.2-0.6; only baseline farm living 0.4; 0.2-0.8). The odds ratio for developing symptoms from baseline to follow-up was almost three (OR 2.7; 95% CI 2.1-3.3), irrespective of farm living. For symptoms of wheeze, no statistically significant association with farm living was observed. CONCLUSIONS: The protective effect of farm living on allergic rhinitis persists from childhood to early adulthood. Continuing exposure over puberty does not add to the effect. This confirms that the window of opportunity for a protective effect might be found in childhood

    A High-Resolution Crystal Structure that Reveals Molecular Details of Target Recognition by the Calcium-Dependent Lipopeptide Antibiotic Laspartomycin C

    No full text
    The calcium-dependent antibiotics (CDAs) are an important emerging class of antibiotics. The crystal structure of the CDA laspartomycin C in complex with calcium and the ligand geranyl-phosphate at a resolution of 1.28 Å is reported. This is the first crystal structure of a CDA bound to its bacterial target. The structure is also the first to be reported for an antibiotic that binds the essential bacterial phospholipid undecaprenyl phosphate (C55-P). These structural insights are of great value in the design of antibiotics capable of exploiting this unique bacterial target
    corecore