70 research outputs found
Assessment of the Comfort of the Urban Environment
ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΎΠ±ΡΠ΅ΠΌΠΈΡΠΎΠ²ΡΡ
ΠΈΠ΄Π΅ΠΉ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ±Π°Π½ΠΈΠ·ΠΌΠ°, ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠΈΠΏ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
Π³ΠΎΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΌΠ½ΠΎΠ³ΠΎΡΡΠ°ΠΆΠ½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠ°ΠΉΠΎΠ½Π½ΠΎΠΉ Π·Π°ΡΡΡΠΎΠΉΠΊΠΈ ΠΈ Π½Π΅ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ Π³ΠΎΡΠΎΠ΄ΠΎΠ² Π½Π° Π³ΡΠ°Π½ΠΈΡΠ°Ρ
, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π·Π΅ΠΌΠ»ΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ·Π΄Π°Π΅Ρ ΠΎΠ³ΡΠΎΠΌΠ½ΡΡ Π½Π°Π³ΡΡΠ·ΠΊΡ Π½Π° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΠ΅ ΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠ΅ ΡΠ΅ΡΠΈ. Π ΡΠ°ΠΌΠΊΠ°Ρ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π°Π½Π°Π»ΠΈΠ· ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΡΠ±Π°Π½ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π±ΡΠ»ΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΊΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, Π²Π»ΠΈΡΡΡΠΈΠ΅ Π½Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΎΠΉ Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ, Π²ΠΊΠ»ΡΡΠ°Ρ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΡΡΡ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ, ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ, ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎΡΡΡ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΈ ΠΎΠΏΡΡΠ° Π΄ΡΡΠ³ΠΈΡ
ΡΡΡΠ°Π½ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
Π³ΠΎΡΠΎΠ΄ΠΎΠ², Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ, ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ½ΡΡ
ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΆΠΈΠ·Π½ΠΈ Π³ΠΎΡΠΎΠΆΠ°Π½. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΡΡ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ Π΄Π»Ρ Π³ΠΎΡΠΎΠ΄ΡΠΊΠΈΡ
ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²ΡΠΈΠΊΠΎΠ², Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π²ΡΠ΅Ρ
Π·Π°ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠΎΡΠΎΠ½, ΡΡΡΠ΅ΠΌΡΡΠΈΡ
ΡΡ ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠΉ ΠΈ ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΎΠΉ Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ Π² Π ΠΎΡΡΠΈΠΈ.Despite the legislative support for global ideas of new urbanism, the current development model of Russian cities continues to adhere to the direction of high-rise micro-district construction and uncontrolled expansion at the boundaries, leading to the irrational use of land and placing a significant burden on transportation and engineering networks. The research involved the analysis and comparison of various models of urban development as well as methods for assessing the quality of the urban environment. As a result, key factors influencing the creation of a comfortable urban environment were identified, including infrastructure accessibility, environmental sustainability, social equity, and spatial functionality. Based on the obtained data and the experience of other countries, recommendations and solutions for the development of Russian cities were proposed, aimed at optimizing land use, creating more functional and harmonious spaces, and improving the quality of life for urban residents. The research holds practical significance for urban planners, architects, and all stakeholders striving to create a sustainable and comfortable urban environment in Russi
Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning
We introduce a novel hybrid of two fieldsβComputational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)βas a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool
Flapping and Flexible Wing Aerodynamics of Low Reynolds Number Flight Vehicles
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76905/1/AIAA-2006-503-331.pd
ΠΠ΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΡΠ³ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π»ΠΈΠ½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ Π·ΠΈΠΌΠ½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΈΡ
Relevance. Currently, in many countries of the world, the production of non-season raspberry berry products has become widespread. Recently, interest in this technology has arisen in Russia, which has great prospects for the development of industrial gardening. In our opinion, it is promising to develop elements of technology for the non-seasonal production of red raspberries, propagated by the method of clonal micropropagation with a traditional and remontant type of fruiting in the conditions of winter heated greenhouses.Material and methods. The experiments were carried out in the laboratory of clonal micropropagation of garden plants in the fruit growing laboratory of RGAU-MSHA named after K.A. Timiryazev. The objects of research were varieties of red raspberries with a traditional (variety Volnitsa) and remontant (varieties Orangevoe Chudo and Bryanskoe Divo) type of fruiting. The experimental plants were propagated by the method of clonal micropropagation and grown before distillation in open and protected ground; plants propagated by root offspring served as control. Experimental plants were planted in open ground for growing in mid-May, in mid-October they were transplanted into 10 liter containers and transferred to protected ground conditions. Then put in the refrigerator compartment with a temperature of + 1 ... + 5Β°C. For distillation, the raspberry repairing plants were exposed in the winter heated greenhouse on January 20, while the shoots of replacing the aboveground system were normalized: without normalization, 3 shoots per plant, complete pruning of the aboveground system. Raspberries with a traditional type of fruiting were exposed in a winter heated greenhouse in three periods on January 20, February 10, March 2. Accounting for the passage of the phenological phases of development and yield was made for 3 months every 5 days.Results. In the conditions of winter heated greenhouses, efficiency has been shown and elements of technology for non-season production of raspberry berries remontant and berries with a traditional type of fruiting, propagated in vitro and grown before open field distillation are developed. It was revealed that it is necessary to normalize the shoots before distillation of raspberry remontant, and the optimal timing for the start of distillation for raspberries with a traditional type of fruiting has been established.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΡΡΠ°Π½Π°Ρ
ΠΌΠΈΡΠ° ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ Π½Π΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠΉ ΡΠ³ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π»ΠΈΠ½Ρ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊ ΠΈ Π² Π ΠΎΡΡΠΈΠΈ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ Π΄Π»Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΎΠ²ΠΎΠ΄ΡΡΠ²Π°. ΠΠ° Π½Π°Ρ Π²Π·Π³Π»ΡΠ΄, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠ³ΠΎΠ΄ ΠΌΠ°Π»ΠΈΠ½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ, ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π·ΠΈΠΌΠ½ΠΈΡ
ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΠ΅ΠΏΠ»ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°. ΠΠΏΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π΄ΠΎΠ²ΡΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΎΠ΄ΡΡΠ²Π° Π ΠΠΠ£-ΠΠ‘Π₯Π ΠΈΠΌ. Π.Π. Π’ΠΈΠΌΠΈΡΡΠ·Π΅Π²Π°. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠΎΡΡΠ° ΠΌΠ°Π»ΠΈΠ½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ (ΡΠΎΡΡ ΠΠΎΠ»ΡΠ½ΠΈΡΠ°) ΠΈ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΡΠΌ (ΡΠΎΡΡΠ° ΠΡΠ°Π½ΠΆΠ΅Π²ΠΎΠ΅ ΡΡΠ΄ΠΎ ΠΈ ΠΡΡΠ½ΡΠΊΠΎΠ΅ Π΄ΠΈΠ²ΠΎ) ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ. ΠΠΏΡΡΠ½ΡΠ΅ ΡΠ°ΡΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠ°ΡΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅Π΄ Π²ΡΠ³ΠΎΠ½ΠΊΠΎΠΉ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ ΠΈ Π·Π°ΡΠΈΡΠ΅Π½Π½ΠΎΠΌ Π³ΡΡΠ½ΡΠ΅, ΠΊΠΎΠ½ΡΡΠΎΠ»Π΅ΠΌ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡ, ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΡΠ½Π΅Π²ΡΠΌΠΈ ΠΎΡΠΏΡΡΡΠΊΠ°ΠΌΠΈ. Π ΠΎΡΠΊΡΡΡΡΠΉ Π³ΡΡΠ½Ρ ΡΠ°ΡΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Ρ Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΌΠ°Ρ, Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΎΠΊΡΡΠ±ΡΡ ΠΈΡ
ΠΏΠ΅ΡΠ΅ΡΠ°Π΄ΠΈΠ»ΠΈ Π² ΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΡ ΠΎΠ±ΡΠ΅ΠΌΠΎΠΌ 10 Π» ΠΈ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°ΡΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π³ΡΡΠ½ΡΠ°. ΠΠ°ΡΠ΅ΠΌ Π²ΡΡΡΠ°Π²ΠΈΠ»ΠΈ Π² Ρ
ΠΎΠ»ΠΎΠ΄ΠΈΠ»ΡΠ½ΡΠΉ ΠΎΡΡΠ΅ΠΊ Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΎΠΉ 1β¦5Β°C. ΠΠ»Ρ Π²ΡΠ³ΠΎΠ½ΠΊΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΠΎΠΉ Π²ΡΡΡΠ°Π²Π»ΡΠ»ΠΈ Π² Π·ΠΈΠΌΠ½ΡΡ ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ ΡΠ΅ΠΏΠ»ΠΈΡΡ 20 ΡΠ½Π²Π°ΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΡ ΠΏΠΎΠ±Π΅Π³ΠΎΠ² Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ: Π±Π΅Π· Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΠΈ, 3 ΠΏΠΎΠ±Π΅Π³Π° Π½Π° ΡΠ°ΡΡΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»Π½Π°Ρ ΠΎΠ±ΡΠ΅Π·ΠΊΠ° Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. ΠΠ°Π»ΠΈΠ½Ρ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΡΠ°Π²Π»ΡΠ»ΠΈ Π² Π·ΠΈΠΌΠ½ΡΡ ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ ΡΠ΅ΠΏΠ»ΠΈΡΡ Π² ΡΡΠΈ ΡΡΠΎΠΊΠ° 20 ΡΠ½Π²Π°ΡΡ, 10 ΡΠ΅Π²ΡΠ°Π»Ρ, 2 ΠΌΠ°ΡΡΠ°. Π£ΡΠ΅ΡΡ ΠΏΡΠΎΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π· ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ ΡΡΠΎΠΆΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 3 ΠΌΠ΅ΡΡΡΠ΅Π² ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΠΆΠ΄ΡΠ΅ 5 Π΄Π½Π΅ΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π·ΠΈΠΌΠ½ΠΈΡ
ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΠ΅ΠΏΠ»ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠ³ΠΎΠ΄ ΠΌΠ°Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΠΎΠΉ ΠΈ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ, ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΡ
in vitro ΠΈ Π²ΡΡΠ°ΡΠ΅Π½Π½ΡΡ
ΠΏΠ΅ΡΠ΅Π΄ Π²ΡΠ³ΠΎΠ½ΠΊΠΎΠΉ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π³ΡΡΠ½ΡΠ΅. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΡ ΠΏΠΎΠ±Π΅Π³ΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄ Π²ΡΠ³ΠΎΠ½ΠΊΠΎΠΉ ΠΌΠ°Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΠΎΠΉ ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠΎΠΊΠΈ Π½Π°ΡΠ°Π»Π° Π²ΡΠ³ΠΎΠ½ΠΊΠΈ Π΄Π»Ρ ΠΌΠ°Π»ΠΈΠ½Ρ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΉ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ Π² ΠΌΠ°Π»ΡΡ Π΄ΠΎΠ·Π°Ρ Π½Π° ΡΡΠ°ΠΏΠ΅ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ (Lonicera L.) ΠΏΠΎΠ΄ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΈΠ½Π΅ΠΉ (Caeruleae Rehd.) ΠΊ Π½Π΅ΡΡΠ΅ΡΠΈΠ»ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΡΡΠ°ΠΏΠ΅ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ
Relevance. In recent years, interest in the edible honeysuckle culture has increased in Russia, the wide distribution of which is hampered by the lack of quality planting material. The technology of clonal micropropagation allows for a short time to obtain a large amount of honeysuckle planting material, more than a thousand regenerated plants per year from one meristematic apex introduced into an in vitro culture. It is hundreds of times more than in traditional methods of vegetative propagation. Adaptation to non-sterile conditions is the final and most crucial stage of clonal micropropagation, the loss of which can be from 50 to 90%. It should be noted that there is practically no research on how the further development of adapted honeysuckle plants takes place during subsequent growing.Methods. Researching of growth regulators of the new generation Superstim 1 and Superstim 2 effect in low and ultra-low doses on the survival rates and development of honeysuckle plants at the stages of adaptation subsequent growing.Results. Superstim 1 is more effective at physiological concentrations β 1 x 10-7 and in the field of ultra-low doses β 1 x 10-14, 1 x 10-15%. At the stage of subsequent growing, a positive after-effect of physiological concentrations β 1x10-3 and 1x10-7 was observed, and an ultra-low dose β 1x10-17%. The growth regulator Superstim 2 at the stages of adaptation and subsequent growing is effectively used only in one concentration β 1x10-16%. The additional foliar treatments at the stage of subsequent growing are not necessary.Β ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ Π² Π ΠΎΡΡΠΈΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΊ ΠΊΡΠ»ΡΡΡΡΠ΅ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ ΡΡΠ΅Π΄ΠΎΠ±Π½ΠΎΠΉ, ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΡΡΡ ΠΈΠ·-Π·Π° Π΄Π΅ΡΠΈΡΠΈΡΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. Π’Π΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π° ΠΊΠΎΡΠΎΡΠΊΠΈΠΉ ΡΡΠΎΠΊ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ, Π±ΠΎΠ»Π΅Π΅ ΡΡΡΡΡΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ-ΡΠ΅Π³Π΅Π½Π΅ΡΠ°Π½ΡΠΎΠ² Π² Π³ΠΎΠ΄ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΊΡΠ»ΡΡΡΡΡ in vitro ΠΌΠ΅ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°ΠΏΠ΅ΠΊΡΠ°, ΡΡΠΎ Π² ΡΠΎΡΠ½ΠΈ ΡΠ°Π· Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π²Π΅Π³Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π°ΠΏΡΠ°ΡΠΈΡ ΠΊ Π½Π΅ΡΡΠ΅ΡΠΈΠ»ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π°ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΠ°ΠΏΠΎΠΌ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΠ΅ΡΠΈ Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΎΡ 50 Π΄ΠΎ 90% ΠΌΠ΅ΡΠΈΠΊΠ»ΠΎΠ½ΠΎΠ². Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π°Π΄Π°ΠΏΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ ΠΏΡΠΈ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠΈ.ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΡ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 1 ΠΈ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 2 Π² ΠΌΠ°Π»ΡΡ
ΠΈ ΡΠ²Π΅ΡΡ
ΠΌΠ°Π»ΡΡ
Π΄ΠΎΠ·Π°Ρ
Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΏΡΠΈΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ Π½Π° ΡΡΠ°ΠΏΠ°Ρ
Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΈ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 1 Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π΅Π½ Π² ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ β 1x10-7% ΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ²Π΅ΡΡ
ΠΌΠ°Π»ΡΡ
Π΄ΠΎΠ· β 1x10-14, 1x10-15%. ΠΠ° ΡΡΠ°ΠΏΠ΅ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ β 1x10-3, 1x10-7%, ΠΈ ΡΠ²Π΅ΡΡ
ΠΌΠ°Π»ΠΎΠΉ Π΄ΠΎΠ·Ρ β 1x10-17%. ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 2 Π½Π° ΡΡΠ°ΠΏΠ°Ρ
Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΈ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ β 1x10-16%. Π Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π½Π΅ΠΊΠΎΡΠ½Π΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ°Ρ
Π½Π° ΡΡΠ°ΠΏΠ΅ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ.
The Gene Ontology knowledgebase in 2023
The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project
The Gene Ontology resource: enriching a GOld mine
The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations
- β¦