77 research outputs found

    Q-dependent light scattering by electrons in LaB6

    Full text link
    The inelastic light scattering by intraband electronic excitations in metallic lanthanum hexaboride has been studied in the temperature range of 10-300 K. General agreement has been obtained between the measured spectra and the spectra calculated within the band theory taking into account the renormalization of electron energies owing to electron-phonon scattering. The electron-phonon coupling constant λ and electron relaxation frequency Γ have been estimated. The dependence of the electron self-energies on the direction and magnitude of the wave vector has been revealed, implying the anisotropic electron-phonon interaction or the contribution from other electron scattering mechanisms. © 2013 Pleiades Publishing, Ltd

    Torsional sensing of small-molecule binding using magnetic tweezers

    Get PDF
    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3 ± 1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment

    Antiparticles

    No full text

    PHASE CONJUGATION OF THE SOUND WAVE, GENERATED BY THE MOVING SOURCE

    No full text
    We investigate the spatial structure of the contrary sound wave, generated in active parametric layer by the local incident beam, moving along the specimen surface
    corecore