2 research outputs found

    Sculpting oscillators with light within a nonlinear quantum fluid

    Full text link
    Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room temperature quantum states [11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualise the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially-separated pump spots. Although oscillating at tuneable THz-scale frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic

    РадиографичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ контроля сварных швов Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ²

    Get PDF
    ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² сварных соСдинСний являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· основных Π·Π°Π΄Π°Ρ‡ Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля, примСняСмого для диагностики тСхничСского состояния Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ назначСния. Π‘Ρ€Π΅Π΄ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» радиографичСский ΠΌΠ΅Ρ‚ΠΎΠ΄. Для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… радиографичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, ΠΈ обнаруТСния Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² сварки, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹. Одним ΠΈΠ· пСрспСктивных Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ являСтся Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, основанный Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти.Detection of defects in welded joints is one of the main tasks of non-destructive testing used for diagnostics of the technical condition of pipelines for various purposes. Among the methods of nondestructive testing, the radiographic method is widely used. For processing images obtained by radiographic method, and the detection of welding defects, various algorithms are used. One of the promising algorithms for image processing is an algorithm based on the neural network method
    corecore