297 research outputs found

    Cosmic ray nuclei of energy 50 GeV/NUC

    Get PDF
    Preliminary results from the High Energy Gas Cerenkov Spectrometer indicate that the sub-iron to iron ratio increases beyond 100 GeV/nucleon. This surprising finding is examined in light of various models for the origin and propagation of galactic cosmic rays

    Antiprotons in cosmic rays

    Get PDF
    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest

    Measurement of the iron spectrum from 60 to 200 GeV per nucleon

    Get PDF
    The high energy gas Cerenkov Spectrometer (HEGCS) was flown by balloon from Palestine, Texas on September 30, 1983. The instrument maintained an altitude of 118,000 ft (4.7 g/sq cms) for 6 hours. Details of the ongoing data analysis and preliminary results on the Fe spectrum to 10 to the 13th power eV/nucleus are given

    High resolution Cherenkov detectors for cosmic ray isotope experiment

    Get PDF
    Cerenkov detectors are used to measure the velocity of particles in configurations designed to study the isotopic composition of galactic cosmic rays. The geometrical properties of the detector are outlined. Monte-Carlo simulations of photon propagation in a diffusive detector were undertaken. The scattering properties of diffusively reflecting white paint and of surface treatments for the radiator material were measured. It is found that the absorption of light in the radiator is an important light loss mechanism. The simulations are used to find optimal mapping techniques and data reduction strategies. The application of these techniques are discussed with respect to the large area isotopic composition experiment (ALICE) Cerenkov detector

    The design of an experiment to detect low energy antiprotons

    Get PDF
    The techniques to be used in a balloon borne experiment APEX to detect 220 MeV antiprotons are described, paying particular attention to potential sources of background. Event time history is shown to be very effective in eliminating this background. Results of laboratory tests on the timing resolution which may be achieved are presented

    On the high energy proton spectrum measurements

    Get PDF
    The steepening of the proton spectrum beyond 1000 GeV and the rise in inelastic cross sections between 20 and 600 GeV observed by the PROTON-1-2-3 satellite experiments were explained by systematic effects of energy dependent albedo (backscatter) from the calorimeter

    Mass resolution optimization in a large isotopic composition experiment

    Get PDF
    A range-energy experiment was built to measure the isotopic composition of galactic cosmic rays. An enrichment of neutron rich isotopes, 22Ne and (25Mg + 26Mg) in particular, when compared to the solar composition is shown. A rich statistics measurement of these and other neutron-rich isotopes in the galactic flux yields information to the source of these particles. A computer simulation of the experiment was used to estimate the instrument resolution. The Cherenkov detector light collection efficiency, was calculated. Absorption of light in the radiator was considered to determine the optimum Cherenkov medium thickness. The experiment will determine the isotopic composition for the elements neon through argon in the energy range 300 to 800 MeV per nucleon

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    Co/Ni element ratio in the galactic cosmic rays between 0.8 and 4.3 GeV/nucleon

    Get PDF
    In a one-day balloon flight of the Trans-Iron Galactic Element Recorder (TIGER) in 1997, the instrument achieved excellent charge resolution for elements near the Fe peak, permitting a new measurement of the element ratio Co/Ni. The best fit to the data, extrapolated to the top of the atmosphere, gives an upper limit for this ratio of 0.093±0.037 over the energy interval 0.8 to 4.3 GeV/nucleon; because a Co peak is not seen in the data, this result is given as an upper limit. Comparing this upper limit with calculations by Webber & Gupta suggests that at the source of these cosmic rays a substantial amount of the electron-capture isotope 59Ni survived. This conclusion is in conflict with the clear evidence from ACE/CRIS below 0.5 GeV/nucleon that there is negligible 59Ni surviving at the source. Possible explanations for this apparent discrepancy are discussed

    The Absolute Spectra of Galactic Cosmic Rays at Solar Minimum and Their Implications for Manned Spaceflight

    Get PDF
    The radiation dose from galactic cosmic rays during a proposed mission to Mars is near the annual dose limit for the crew. Since the absolute spectra of galactic cosmic rays critically influences mission planning and spacecraft design, these spectra must be determined as accurately as possible. We have fit published measurements with solutions of the spherically symmetric diffusion equation to make accurate representations of the spectra. We report preliminary determinations on the absolute differential energy spectra at 1 AU and discuss the implications for the proposed missions to Mars
    • …
    corecore