25 research outputs found

    A Potent and Selective S1P1 Antagonist with Efficacy in Experimental Autoimmune Encephalomyelitis

    Get PDF
    SummaryLymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P1), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P1 receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P1 antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing. NIBR-0213 showed comparable therapeutic efficacy to fingolimod in experimental autoimmune encephalomyelitis (EAE), a model of human MS. These data provide convincing evidence that S1P1 antagonists are effective in EAE. In addition, the profile of NIBR-0213 makes it an attractive candidate to further study the consequences of S1P1 receptor antagonism and to differentiate the effects from those of S1P1 agonists

    A Monoselective Sphingosine-1-Phosphate Receptor-1 Agonist Prevents Allograft Rejection in a Stringent Rat Heart Transplantation Model

    Get PDF
    SummaryFTY720 is an immunomodulator with demonstrated efficacy in a phase II trial of relapsing multiple sclerosis. FTY720-phosphate, the active metabolite generated upon phosphorylation in vivo, acts as a potent agonist on four of the five known sphingosine-1-phosphate (S1P1) receptors. AUY954, an aminocarboxylate analog of FTY720, is a low nanomolar, monoselective agonist of the S1P1 receptor. Due to its selectivity and pharmacokinetic profile, AUY954 is an excellent pharmacological probe of S1P1-dependent phenomena. Oral administration of AUY954 induces a profound and reversible reduction of circulating lymphocytes and, in combination with RAD001 (Certican/Everolimus, an mTOR inhibitor), is capable of prolonging the survival of cardiac allografts in a stringent rat transplantation model. This demonstrates that a selective agonist of the S1P1 receptor is sufficient to achieve efficacy in an animal model of transplantation

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources

    NBD-labeled derivatives of the immunomodulatory drug FTY720 as tools for metabolism and mode of action studies.

    No full text
    Fluorescently labeled chiral analogs of the immunomodulatory drug FTY720 and its corresponding phosphates with variable aliphatic spacers between the aromatic ring and the NBD label have been synthesized. Determining the influence of the spacer on the in vitro phosphorylation rate by SPHK1 and 2 resulted in the identification of NBD-(R)-AAL 1c,d which are phosphorylated with an efficiency comparable to that of the unlabeled FTY720 analog (R)-AAL. Furthermore, the NBD-(R)-AAL phosphates 10c,d were proven to be a functional S1P receptor agonist

    Special ergolines efficiently inhibit the chemokine receptor CXCR3 in blood

    No full text
    The structure activity relationship of highly potent special ergolines which selectively block the chemokine receptor CXCR3 is reported. The most potent compounds showed IC50 values below 10 nM in both ligand binding and Ca2+-mobilization assays. However, these compounds were poorly active in an assay that measures receptor occupancy in blood. Introduction of polar substituents led to derivatives with IC50 values below 10 nM in this assay. Among them was compound 11a which showed both a favorable PK profile and cross reactivity with rodent CXCR3 making it a promising tool compound to further explore the role of CXCR3 in animal models

    Non-covalent polyvalent ligands by self-assembly of small glycodendrimers: a novel concept for the inhibition of polyvalent carbohydrate-protein interactions in vitro and in vivo.

    No full text
    Polyvalent carbohydrate-protein interactions occur frequently in biology, particularly in recognition events on cellular membranes. Collectively, they can be much stronger than corresponding monovalent interactions, rendering it difficult to control them with individual small molecules. Artificial macromolecules have been used as polyvalent ligands to inhibit polyvalent processes; however, both reproducible synthesis and appropriate characterization of such complex entities is demanding. Herein, we present an alternative concept avoiding conventional macromolecules. Small glycodendrimers which fulfill single molecule entity criteria self-assemble to form non-covalent nanoparticles. These particles-not the individual molecules-function as polyvalent ligands, efficiently inhibiting polyvalent processes both in vitro and in vivo. The synthesis and characterization of these glycodendrimers is described in detail. Furthermore, we report on the characterization of the non-covalent nanoparticles formed and on their biological evaluation

    Orally bioavailable isothioureas block function of the chemokine receptor CXCR4 in vitro and in vivo.

    No full text
    The interaction of the chemokine receptor CXCR4 with its ligand CXCL12 is involved in many biological processes such as hematopoesis, migration of immune cells, as well as in cancer metastasis. CXCR4 also mediates the infection of T-cells with X4-tropic HIV functioning as a coreceptor for the viral envelope protein gp120. Here, we describe highly potent, selective CXCR4 inhibitors that block CXCR4/CXCL12 interactions in vitro and in vivo as well as the infection of target cells by X4-tropic HIV

    BZM055, a SPECT tracer candidate for studying FTY720 brain distribution and myelin imaging

    No full text
    FTY720 (fingolimod, Gilenya®) is a sphingosine 1-phosphate (S1P) receptor modulator that showed significant therapeutic efficacy after oral administration to multiple sclerosis patients. We propose here an imaging tracer to study the pharmacokinetics and organ distribution of FTY720 in patients and, since this drug accumulates in myelin sheaths, for myelin imaging. FTY720 does not contain any atom whose PET or SPECT radioisotope would have a half-life compatible with its pharmacokinetic properties. We hence searched for a radiolabeled derivative that would be an adequate surrogate of the drug, mimicking its pharmacokinetics and organ distribution, but also its affinity, selectivity for S1P receptors, phosphorylation kinetics, and overall physicochemical properties. We selected a close mimic of the drug, BZM055 (2a), for radiolabeling and further characterizatio

    Reduced cardiac side-effect potential by introduction of polar groups: discovery of NIBR-1282, an orally bioavailable CCR5 antagonist which is active in vivo.

    No full text
    Introduction of polar groups in a series of potent CCR5 antagonists which are very likely to adversely affect the conduction system in the heart led to the identification of NIBR-1282 which did not show adverse effects when tested in an isolated rabbit heart ex vivo model. Administration of NIBR-1282 in combination with a non-efficacious dose of CsA led to significant prolongation of kidney allograft survival in cynomolgus monkeys
    corecore