14 research outputs found

    Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel

    Get PDF
    Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G) achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the materials adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials

    Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions

    Full text link

    Thermoresponsive Injectable Hydrogels Cross-Linked by Native Chemical Ligation

    No full text
    Temperature-induced physical gelation was combined with native chemical ligation (NCL) as a chemical cross-linking mechanism to yield rapid network formation and mechanically strong hydrogels. To this end, a novel monomer N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) was synthesized that copolymerizes with N-isopropylacrylamide (NIPAAm) to yield thermoresponsive polymers decorated with cysteine functionalities. Triblock copolymers consisting of a poly(ethylene glycol) (PEG) middle block flanked by random blocks of NIPAAm and HPMA-Cys were successfully synthesized and characterized. Additionally, thioester cross-linkers were synthesized based on PEG and hyaluronic acid, respectively. Upon mixing the thermoresponsive polymer with PEG or hyaluronic acid cross-linker, cysteine and thioester functionalities react under physiological conditions to generate a native peptide bond. An immediate physical network was formed after elevation of the temperature to 37 °C due to the self-assembly of the pNIPAAm chains. This network was stabilized in time by covalent cross-linking due to NCL reaction between thioester and cysteine functionalities, resulting in hydrogels with up to 10 times higher storage moduli than without chemical cross-links. Finally, a collagen mimicking peptide sequence was successfully ligated to this hydrogel using the same reaction mechanism, showing the potential of this hydrogel for tissue engineering applications. © 2014 American Chemical Society
    corecore